Add to MyChemicals Print Friendly Page
Chemical Datasheet

CHLOROACETIC ACID, SOLID

6.1 - Poison 8 - Corrosive
Chemical Identifiers | Hazards | Response Recommendations | Physical Properties | Regulatory Information | Alternate Chemical Names

Chemical Identifiers

The Chemical Identifier fields include common identification numbers, the NFPA diamond U.S. Department of Transportation hazard labels, and a general description of the chemical. The information in CAMEO Chemicals comes from a variety of data sources.
CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code
  • 79-11-8
  • Poison
  • Corrosive
NIOSH Pocket Guide International Chem Safety Card
none
NFPA 704
Diamond Hazard Value Description
1
4 0
Blue Health 4 Can be lethal.
Red Flammability 1 Must be preheated before ignition can occur.
Yellow Instability 0 Normally stable, even under fire conditions.
White Special
(NFPA, 2010)
General Description
Chloroacetic acid, solid is a colorless to light-brown crystalline material. It is soluble in water and sinks in water. Combustible. It is transported as a molten liquid and therefore can cause thermal burns. It is toxic by ingestion, skin absorption and inhalation of dust. It is corrosive to metals and tissue.

Hazards

The Hazard fields include special hazard alerts air and water reactions, fire hazards, health hazards, a reactivity profile, and details about reactive groups assignments and potentially incompatible absorbents. The information in CAMEO Chemicals comes from a variety of data sources.
Reactivity Alerts
none
Air & Water Reactions
Water soluble.
Fire Hazard
When heated to decomposition, it emits highly toxic fumes of phosgene and chlorides. Water may cause frothing if it gets below surface of the liquid and turns to steam. Flammable/poisonous gases may accumulate in tanks and hopper cars. Some of these materials may ignite combustibles, e.g., wood, paper, oil. It is corrosive to metals. Avoid heating. (EPA, 1998)
Health Hazard
This material is very toxic. The probable lethal oral dose is 50-500 mg/kg of body weight, between one teaspoon and one ounce, for a 150 lb. person. Chloroacetic acid is irritating to the skin, cornea, and respiratory tract and causes burns. It may severely damage skin and mucous membranes. Ingestion may interfere with essential enzyme systems and cause perforation and peritonitis. Burns to skin result in marked fluid and electrolyte loss. Death may follow if more than 3% of the skin is exposed to this material. Other health hazards include central nervous system depression, and respiratory system depression. Persons with lung diseases are at greater risk. (EPA, 1998)
Reactivity Profile
CHLOROACETIC ACID is a chlorinated carboxylic acid (organic acid). These organic compounds donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents

No information available.

Response Recommendations

The Response Recommendation fields include isolation and evacuation distances, as well as recommendations for firefighting, non-fire response, protective clothing, and first aid. The information in CAMEO Chemicals comes from a variety of data sources.
Isolation and Evacuation
Excerpt from ERG Guide 153 [Substances - Toxic and/or Corrosive (Combustible)]:

IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

SPILL: Increase the immediate precautionary measure distance, in the downwind direction, as necessary.

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2020)
Firefighting
This material is extremely hazardous to health, but fire fighters may enter areas with extreme care. Full protective clothing including a self-contained breathing apparatus, coat, pants, gloves, boots and bands around legs, arms and waist should be provided. No skin surface should be exposed. Cool fire-exposed containers with water. Move container from fire area if you can do so without risk. Spray cooling water on containers that are exposed to flames until well after fire is out.

Water fog applied gently to surface will cause frothing which will extinguish fire. Normal fire fighting procedures may be used. Extinguish fire using agent suitable for surroundings. Material itself does not burn or burns with difficulty. For small fires use dry chemical, carbon dioxide, water spray or foam. For large fires use water spray, fog, or foam. (EPA, 1998)
Non-Fire Response
Excerpt from ERG Guide 153 [Substances - Toxic and/or Corrosive (Combustible)]:

ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS. (ERG, 2020)
Protective Clothing
For emergency situations, wear a positive pressure, pressure-demand, full facepiece self-contained breathing apparatus (SCBA) or pressure- demand supplied air respirator with escape SCBA and a fully-encapsulating, chemical resistant suit. (EPA, 1998)
DuPont Tychem® Suit Fabrics
Tychem® Fabric Legend
QS = Tychem 2000 SFR
QC = Tychem 2000
SL = Tychem 4000
C3 = Tychem 5000
TF = Tychem 6000
TP = Tychem 6000 FR
RC = Tychem RESPONDER® CSM
TK = Tychem 10000
RF = Tychem 10000 FR
Testing Details
The fabric permeation data was generated for DuPont by a third party laboratory. Permeation data for industrial chemicals is obtained per ASTM F739. Normalized breakthrough times (the time at which the permeation rate exceeds 0.1 μg/cm2/min) are reported in minutes. All chemicals have been tested between approximately 20°C and 27°C unless otherwise stated. All chemicals have been tested at a concentration of greater than 95% unless otherwise stated.
Chemical warfare agents (Lewisite, Sarin, Soman, Sulfur Mustard, Tabun and VX Nerve Agent) have been tested at 22°C and 50% relative humidity per military standard MIL-STD-282. "Breakthrough time" for chemical warfare agents is defined as the time when the cumulative mass which permeated through the fabric exceeds the limit in MIL-STD-282 [either 1.25 or 4.0 μg/cm2].
A Caution from DuPont
This information is based upon technical data that DuPont believes to be reliable on the date issued. It is subject to revision as additional knowledge and experience are gained. The information reflects laboratory performance of fabrics, not complete garments, under controlled conditions. It is intended for informational use by persons having technical skill for evaluation under their specific end-use conditions, at their own discretion and risk. It is the user's responsibility to determine the level of toxicity and the proper personal protective equipment needed. Anyone intending to use this information should first verify that the garment selected is suitable for the intended use. In many cases, seams and closures have shorter breakthrough times and higher permeation rates than the fabric. If fabric becomes torn,abraded or punctured, or if seams or closures fail, or if attached gloves, visors, etc. are damaged, end user should discontinue use of garment to avoid potential exposure to chemical. Since conditions of use are outside our control, DuPont makes no warranties, express or implied, including, without limitation, no warranties of merchantability or fitness for a particular use and assume no liability in connection with any use of this information. This information is not intended as a license to operate under or a recommendation to infringe any patent, trademark or technical information of DuPont or others covering any material or its use.
Normalized Breakthrough Times (in Minutes)
Chemical CAS Number State QS QC SL C3 TF TP RC TK RF
Chloro acetic acid (80%) 79-11-8 Liquid >480 >480 >480 >480 >480 >480 >480 >480
> indicates greater than.

Special Warning from DuPont: Tychem® and Tyvek® fabrics should not be used around heat, flames, sparks or in potentially flammable or explosive environments. Only...

...Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with aluminized outer suit) garments are designed and tested to help reduce burn injury during escape from a flash fire. Users of Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with aluminized outer suit) garments should not knowingly enter an explosive environment. Tychem® garments with attached socks must be worn inside protective outer footwear and are not suitable as outer footwear. These attached socks do not have adequate durability or slip resistance to be worn as the outer foot covering.

(DuPont, 2023)

First Aid
Warning: Effects may be delayed. Caution is advised. Chloroacetic acid is extremely corrosive.

Signs and Symptoms of Acute Chloroacetic Acid Exposure: Signs and symptoms of acute ingestion of chloroacetic acid may be severe and include salivation, intense thirst, difficulty in swallowing, chills, and shock. Oral, esophageal, and stomach burns are common and often associated with severe pain. Vomitus generally has a coffee-ground appearance. The potential for circulatory collapse is high following ingestion of chloroacetic acid. Acute inhalation exposure may result in sneezing, hoarseness, choking, laryngitis, dyspnea (shortness of breath), respiratory tract irritation, and chest pain. Bleeding of nose and gums, ulceration of the nasal and oral mucosa, pulmonary edema, chronic bronchitis, and pneumonia may also occur. If the eyes have come in contact with chloroacetic acid, then irritation, pain, swelling, corneal erosion, and blindness may result. Dermal exposure may result in dermatitis (red, inflamed skin), severe burns, and pain.

Emergency Life-Support Procedures: Acute exposure to chloroacetic acid may require decontamination and life support for the victims. Emergency personnel should wear protective clothing appropriate to the type and degree of contamination. Air-purifying or supplied-air respiratory equipment should also be worn, as necessary. Rescue vehicles should carry supplies such as plastic sheeting and disposable plastic bags to assist in preventing spread of contamination.

Inhalation Exposure:
1. Move victims to fresh air. Emergency personnel should avoid self-exposure to chloroacetic acid.
2. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. If breathing is labored, administer oxygen or other respiratory support.
3. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures.
4. RUSH to a health care facility.

Dermal/Eye Exposure:
1. Remove victims from exposure. Emergency personnel should avoid self- exposure to chloroacetic acid.
2. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. If breathing is labored, administer oxygen or other respiratory support.
3. Remove contaminated clothing as soon as possible.
4. If eye exposure has occurred, eyes must be flushed with lukewarm water for at least 15 minutes.
5. Wash exposed skin areas THOROUGHLY with soap and water.
6. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures.
7. RUSH to a health care facility.

Ingestion Exposure:
1. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. If breathing is labored, administer oxygen or other respiratory support.
2. Rinse mouth with large amounts of water. Instruct victims not to swallow this water.
3. DO NOT induce vomiting or attempt to neutralize!
4. Activated charcoal is of no value.
5. Give the victims water or milk: children up to 1 year old, 125 mL (4 oz or 1/2 cup); children 1 to 12 years old, 200 mL (6 oz or 3/4 cup); adults, 250 mL (8 oz or 1 cup). Water or milk should be given only if victims are alert and conscious.
6. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures.
7. RUSH to a health care facility. (EPA, 1998)

Physical Properties

The Physical Property fields include properties such as vapor pressure and boiling point, as well as explosive limits and toxic exposure thresholds The information in CAMEO Chemicals comes from a variety of data sources.

Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula:
  • C2H3ClO2
Flash Point: 302°F (EPA, 1998)
Lower Explosive Limit (LEL): 8 % (USCG, 1999)
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature: data unavailable
Melting Point: 145°F (EPA, 1998)
Vapor Pressure: 1 mmHg at 109.4°F (EPA, 1998)
Vapor Density (Relative to Air): 3.26 (EPA, 1998) - Heavier than air; will sink
Specific Gravity: 1.4043 at 104°F (EPA, 1998) - Denser than water; will sink
Boiling Point: 372°F at 760 mmHg (EPA, 1998)
Molecular Weight: 94.5 (EPA, 1998)
Water Solubility: greater than or equal to 100 mg/mL at 68°F (NTP, 1992)
Ionization Energy/Potential: data unavailable
IDLH: data unavailable

AEGLs (Acute Exposure Guideline Levels)

Final AEGLs for Monochloroacetic acid (79-11-8)
Exposure Period AEGL-1 AEGL-2 AEGL-3
10 minutes NR 12 ppm NR
30 minutes NR 8.3 ppm NR
60 minutes NR 6.6 ppm NR
4 hours NR 1.7 ppm NR
8 hours NR 0.83 ppm NR
NR = Not recommended due to insufficient data
(NAC/NRC, 2023)

ERPGs (Emergency Response Planning Guidelines)

No ERPG information available.

PACs (Protective Action Criteria)

Chemical PAC-1 PAC-2 PAC-3
Chloroacetic acid; (Monochloroacetic acid) (79-11-8) 1.5 ppm 6.6 ppm 15 ppm LEL = 80000 ppm
(DOE, 2018)

Regulatory Information

The Regulatory Information fields include information from the U.S. Environmental Protection Agency's Title III Consolidated List of Lists, the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility Anti-Terrorism Standards, and the U.S. Occupational Safety and Health Administration's Process Safety Management of Highly Hazardous Chemicals Standard List (see more about these data sources).

EPA Consolidated List of Lists

Regulatory Name CAS Number/
313 Category Code
EPCRA 302
EHS TPQ
EPCRA 304
EHS RQ
CERCLA RQ EPCRA 313
TRI
RCRA
Code
CAA 112(r)
RMP TQ
Chloroacetic acid 79-11-8 100/10000 pounds 100 pounds 100 pounds 313

(EPA List of Lists, 2022)

CISA Chemical Facility Anti-Terrorism Standards (CFATS)

No regulatory information available.

OSHA Process Safety Management (PSM) Standard List

No regulatory information available.

Alternate Chemical Names

This section provides a listing of alternate names for this chemical, including trade names and synonyms.