Add to MyChemicals Print Friendly Page
Reactive Group Datasheet

Acids, Carboxylic

What are reactive groups?

Reactive groups are categories of chemicals that typically react in similar ways because they are similar in their chemical structure. Each substance with a chemical datasheet has been assigned to one or more reactive groups, and CAMEO Chemicals uses the reactive group assignments to make its reactivity predictions. More info about reactivity predictions...

If you can't find a chemical in the database--but you know what reactive group it belongs in--you can add the reactive group to MyChemicals instead in order to see the reactivity predictions.

There are 206 chemical datasheets assigned to this reactive group.

Description

Flammability
Many low molecular weight carboxylic acids (C1-C4) have flash points between 100 and 150 degrees F, and relatively wide flammability limits. They are therefore considered a moderate fire hazard.
Reactivity
These organic compounds donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to some extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but will also produce heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.
Toxicity
Corrosive to tissue.
Other Characteristics
Carboxylic acids contain the carboxylic acid functional group (the -COOH group) linked to a hydrocarbon chain. This chain may be a simple alkyl group (containing carbon and hydrogen only and all single bonds) but may also include any of a large number of other organic functional groups, including additional carboxylic acid groups. Carboxylic acids have a sour taste and turn blue litmus red. Most carboxylic acids are solids at room temperature; formic, acetic, propanoic, and butanoic acids are liquids. Carboxylic acids are weak acids.
Examples
Formic acid, acetic acid, oxalic acid, propionic acid, trichlorophenoxyacetic acid, benzoic acid, citric acid, fumaric acid, the fatty acids.

Reactivity Documentation

Use the links below to find out how this reactive group interacts with any of the reactive groups in the database.

The predicted hazards and gas byproducts for each reactive group pair will be displayed, as well as documentation and references that were used to make the reactivity predictions.

Mix Acids, Carboxylic with: