Chemical Datasheet
HYDROGEN PEROXIDE, AQUEOUS SOLUTION, STABILIZED, WITH MORE THAN 60% HYDROGEN PEROXIDE |
Chemical Identifiers
The
Chemical Identifier fields
include common identification numbers, the
NFPA diamond
U.S. Department of Transportation hazard labels, and a general
description of the chemical. The information in CAMEO Chemicals comes
from a variety of
data sources.
CAS Number | UN/NA Number | DOT Hazard Label | USCG CHRIS Code |
---|---|---|---|
|
|
none | |
NIOSH Pocket Guide | International Chem Safety Card | ||
Hydrogen peroxide |
NFPA 704
Diamond | Hazard | Value | Description | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Health | 3 | Can cause serious or permanent injury. | |||||||||
Flammability | 0 | Will not burn under typical fire conditions. | ||||||||||
Instability | 3 | Capable of detonation or explosive decomposition or explosive reaction but requires a strong initiating source or must be heated under confinement before initiation. | ||||||||||
Special | OX | Possesses oxidizing properties. |
(NFPA, 2010)
General Description
A colorless liquid. Vapors may irritate the eyes and mucous membranes. Under prolonged exposure to fire or heat containers may violently rupture due to decomposition. Used to bleach textiles and wood pulp, in chemical manufacturing and food processing.
Hazards
The
Hazard fields
include
special hazard alerts
air and water
reactions, fire hazards, health hazards, a reactivity profile, and
details about
reactive groups assignments
and
potentially incompatible absorbents.
The information in CAMEO Chemicals comes from a variety of
data sources.
Reactivity Alerts
- Explosive
- Strong Oxidizing Agent
Air & Water Reactions
An aqueous solution.
Fire Hazard
Excerpt from ERG Guide 143 [Oxidizers (Unstable)]:
May explode from friction, heat or contamination. These substances will accelerate burning when involved in a fire. May ignite combustibles (wood, paper, oil, clothing, etc.). Some will react explosively with hydrocarbons (fuels). Containers may explode when heated. Runoff may create fire or explosion hazard. (ERG, 2024)
May explode from friction, heat or contamination. These substances will accelerate burning when involved in a fire. May ignite combustibles (wood, paper, oil, clothing, etc.). Some will react explosively with hydrocarbons (fuels). Containers may explode when heated. Runoff may create fire or explosion hazard. (ERG, 2024)
Health Hazard
Excerpt from ERG Guide 143 [Oxidizers (Unstable)]:
TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns or death. Fire may produce irritating and/or toxic gases. Toxic fumes or dust may accumulate in confined areas (basement, tanks, hopper/tank cars, etc.). Runoff from fire control or dilution water may cause environmental contamination. (ERG, 2024)
TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns or death. Fire may produce irritating and/or toxic gases. Toxic fumes or dust may accumulate in confined areas (basement, tanks, hopper/tank cars, etc.). Runoff from fire control or dilution water may cause environmental contamination. (ERG, 2024)
Reactivity Profile
HYDROGEN PEROXIDE, AQUEOUS SOLUTION, STABILIZED, WITH MORE THAN 60% HYDROGEN PEROXIDE is a powerful oxidizing agent. Will react or decompose violently and exothermically with readily oxidizable materials or alkaline substances. May decompose violently in contact with iron, copper, chromium, and most other metals or their salts, which act as catalysts for this reaction, and with ordinary dust (which frequently contain rust, also a catalyst for this reaction). Stabilization operates against such reactions, but does not eliminate their possibility. Contact with combustible materials may result in their spontaneous ignition. Solutions containing over 30% hydrogen peroxide can detonate when mixed with organic solvents (such as acetone, ethanol, glycerol); the violence of the explosion increases with increasing concentration of the hydrogen peroxide. Concentration of solutions of hydrogen peroxide under vacuum led to violent explosions when the concentration was sufficiently high (>90%) [Bretherick 2nd ed., 1979]. Mixtures of aqueous hydrogen peroxide with 1-phenyl-2-methyl propyl alcohol tend to explode if acidified with 70% sulfuric acid [Chem. Eng. News 45(43):73(1967); J, Org. Chem. 28:1893(1963)]. Hydrogen selenide and hydrogen peroxide undergo a very rapid reaction [Mellor 1:941(1946-1947)].
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents
Use caution: Liquids with this reactive group classification have been known to react with the absorbents listed below. More info about absorbents, including situations to watch out for...
- Cellulose-Based Absorbents
- Expanded Polymeric Absorbents
Response Recommendations
The
Response Recommendation fields
include isolation and evacuation distances, as well as recommendations for
firefighting, non-fire response, protective clothing, and first aid. The
information in CAMEO Chemicals comes from a variety of
data sources.
Isolation and Evacuation
Excerpt from ERG Guide 143 [Oxidizers (Unstable)]:
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.
SPILL: Increase the immediate precautionary measure distance, in the downwind direction, as necessary.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.
SPILL: Increase the immediate precautionary measure distance, in the downwind direction, as necessary.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 143 [Oxidizers (Unstable)]:
SMALL FIRE: Use water. Do not use dry chemicals or foams. CO2 or Halon® may provide limited control.
LARGE FIRE: Flood fire area with water from a distance. Do not move cargo or vehicle if cargo has been exposed to heat. If it can be done safely, move undamaged containers away from the area around the fire. Do not get water inside containers: a violent reaction may occur.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Cool containers with flooding quantities of water until well after fire is out. Dike runoff from fire control for later disposal. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
SMALL FIRE: Use water. Do not use dry chemicals or foams. CO2 or Halon® may provide limited control.
LARGE FIRE: Flood fire area with water from a distance. Do not move cargo or vehicle if cargo has been exposed to heat. If it can be done safely, move undamaged containers away from the area around the fire. Do not get water inside containers: a violent reaction may occur.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Cool containers with flooding quantities of water until well after fire is out. Dike runoff from fire control for later disposal. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 143 [Oxidizers (Unstable)]:
Keep combustibles (wood, paper, oil, etc.) away from spilled material. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Use water spray to reduce vapors or divert vapor cloud drift. Prevent entry into waterways, sewers, basements or confined areas.
SMALL SPILL: Flush area with large amounts of water.
LARGE SPILL: DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST. (ERG, 2024)
Keep combustibles (wood, paper, oil, etc.) away from spilled material. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Use water spray to reduce vapors or divert vapor cloud drift. Prevent entry into waterways, sewers, basements or confined areas.
SMALL SPILL: Flush area with large amounts of water.
LARGE SPILL: DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST. (ERG, 2024)
Protective Clothing
Excerpt from ERG Guide 143 [Oxidizers (Unstable)]:
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE. Structural firefighters' protective clothing provides thermal protection but only limited chemical protection. (ERG, 2024)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE. Structural firefighters' protective clothing provides thermal protection but only limited chemical protection. (ERG, 2024)
DuPont Tychem® Suit Fabrics
Tychem® Fabric Legend
QS = Tychem 2000 SFR |
QC = Tychem 2000 |
SL = Tychem 4000 |
C3 = Tychem 5000 |
TF = Tychem 6000 |
TP = Tychem 6000 FR |
RC = Tychem RESPONDER® CSM |
TK = Tychem 10000 |
RF = Tychem 10000 FR |
Testing Details
The fabric permeation data was generated for DuPont by a third party
laboratory. Permeation data for industrial chemicals is obtained per
ASTM F739. Normalized breakthrough times (the time at which the
permeation rate exceeds 0.1 μg/cm2/min) are reported in minutes. All
chemicals have been tested between approximately 20°C and 27°C unless
otherwise stated. All chemicals have been tested at a concentration of
greater than 95% unless otherwise stated.
Chemical warfare agents (Lewisite, Sarin, Soman, Sulfur Mustard, Tabun
and VX Nerve Agent) have been tested at 22°C and 50% relative humidity
per military standard MIL-STD-282. "Breakthrough time" for chemical
warfare agents is defined as the time when the cumulative mass which
permeated through the fabric exceeds the limit in MIL-STD-282 [either
1.25 or 4.0 μg/cm2].
A Caution from DuPont
This information is based upon technical data that DuPont believes to
be reliable on the date issued. It is subject to revision as additional
knowledge and experience are gained. The information reflects
laboratory performance of fabrics, not complete garments, under
controlled conditions. It is intended for informational use by persons
having technical skill for evaluation under their specific end-use
conditions, at their own discretion and risk. It is the user's
responsibility to determine the level of toxicity and the proper
personal protective equipment needed. Anyone intending to use this
information should first verify that the garment selected is suitable
for the intended use. In many cases, seams and closures have shorter
breakthrough times and higher permeation rates than the fabric. If
fabric becomes torn,abraded or punctured, or if seams or closures fail,
or if attached gloves, visors, etc. are damaged, end user should
discontinue use of garment to avoid potential exposure to chemical.
Since conditions of use are outside our control, DuPont makes no
warranties, express or implied, including, without limitation, no
warranties of merchantability or fitness for a particular use and
assume no liability in connection with any use of this information.
This information is not intended as a license to operate under or a
recommendation to infringe any patent, trademark or technical
information of DuPont or others covering any material or its use.
Chemical | CAS Number | State | QS | QC | SL | C3 | TF | TP | RC | TK | RF |
---|---|---|---|---|---|---|---|---|---|---|---|
Hydrogen peroxide (30%) | 7722-84-1 | Liquid | >480 | >480 | >480 | >480 | |||||
Hydrogen peroxide (50%) | 7722-84-1 | Liquid | >480 | >480 | >480 | >480 | |||||
Hydrogen peroxide (70%) | 7722-84-1 | Liquid | >480 | >480 | >480 | >480 | >480 | >480 | >480 |
> indicates greater than.
Special Warning from DuPont: Tychem® and Tyvek® fabrics should not be used around heat, flames, sparks or in potentially flammable or explosive environments. Only...
...Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T
(with aluminized outer suit) garments are designed and tested to help
reduce burn injury during escape from a flash fire. Users of Tychem®
ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with
aluminized outer suit) garments should not knowingly enter an explosive
environment. Tychem® garments with attached socks must be worn inside
protective outer footwear and are not suitable as outer footwear. These
attached socks do not have adequate durability or slip resistance to be
worn as the outer foot covering.
(DuPont, 2024)
First Aid
Excerpt from ERG Guide 143 [Oxidizers (Unstable)]:
Refer to the "General First Aid" section. Specific First Aid: Contaminated clothing may be a fire risk when dry. (ERG, 2024)
Refer to the "General First Aid" section. Specific First Aid: Contaminated clothing may be a fire risk when dry. (ERG, 2024)
Physical Properties
The
Physical Property fields
include properties such as vapor pressure and
boiling point, as well as explosive limits and
toxic exposure thresholds
The information in CAMEO Chemicals comes from a variety of
data sources.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula: |
|
Flash Point: data unavailable
Lower Explosive Limit (LEL): data unavailable
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature: data unavailable
Melting Point: data unavailable
Vapor Pressure: data unavailable
Vapor Density (Relative to Air): data unavailable
Specific Gravity: data unavailable
Boiling Point: data unavailable
Molecular Weight: data unavailable
Water Solubility: data unavailable
Ionization Energy/Potential:
10.54 eV
[From NPG: Hydrogen peroxide]
(NIOSH, 2024)
IDLH:
75 ppm
[From NPG: Hydrogen peroxide]
(NIOSH, 2024)
AEGLs (Acute Exposure Guideline Levels)
No AEGL information available.ERPGs (Emergency Response Planning Guidelines)
Chemical | ERPG-1 | ERPG-2 | ERPG-3 |
---|---|---|---|
Hydrogen Peroxide (7722-84-1) | 10 ppm | 50 ppm | 100 ppm |
(AIHA, 2022)
PACs (Protective Action Criteria)
Chemical | PAC-1 | PAC-2 | PAC-3 |
---|---|---|---|
Hydrogen peroxide (7722-84-1) | 10 ppm | 50 ppm | 100 ppm |
(DOE, 2024)
Regulatory Information
The
Regulatory Information fields
include information from
the U.S. Environmental Protection Agency's Title III Consolidated List of
Lists,
the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility
Anti-Terrorism Standards,
and the U.S. Occupational Safety and Health Administration's
Process Safety Management of Highly Hazardous Chemicals Standard List
(see more about these
data sources).
EPA Consolidated List of Lists
Regulatory Name | CAS Number/ 313 Category Code |
EPCRA 302 EHS TPQ |
EPCRA 304 EHS RQ |
CERCLA RQ | EPCRA 313 TRI |
RCRA Code |
CAA 112(r) RMP TQ |
---|---|---|---|---|---|---|---|
Hydrogen peroxide (Conc.> 52%) | 7722-84-1 | 1000 pounds | 1000 pounds |
(EPA List of Lists, 2024)
CISA Chemical Facility Anti-Terrorism Standards (CFATS)
RELEASE | THEFT | SABOTAGE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chemical of Interest | CAS Number | Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Hydrogen peroxide (concentration of at least 35%) | 7722-84-1 | 35.00 % | 400 pounds | EXP/IEDP |
- EXP/IEDP = explosives/improvised explosive device precursors.
(CISA, 2007)
OSHA Process Safety Management (PSM) Standard List
Chemical Name | CAS Number | Threshold Quantity (TQ) |
---|---|---|
Hydrogen Peroxide (52% by weight or greater) | 7722-84-1 | 7500 pounds |
(OSHA, 2019)
Alternate Chemical Names
This section provides a listing of alternate names for this chemical,
including trade names and synonyms.
- HYDROGEN PEROXIDE, AQUEOUS SOLUTION, STABILIZED, WITH MORE THAN 60% HYDROGEN PEROXIDE