Add to MyChemicals Print Friendly Page
Chemical Datasheet

TRICHLOROETHYLENE

6.1 - Poison
Chemical Identifiers | Hazards | Response Recommendations | Physical Properties | Regulatory Information | Alternate Chemical Names

Chemical Identifiers

The Chemical Identifier fields include common identification numbers, the NFPA diamond U.S. Department of Transportation hazard labels, and a general description of the chemical. The information in CAMEO Chemicals comes from a variety of data sources.
CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code
  • 79-01-6   (TRICHLOROETHYLENE)
  • Poison
NIOSH Pocket Guide International Chem Safety Card
Trichloroethyleneexternal_link
NFPA 704
Diamond Hazard Value Description
1
2 0
Blue Health 2 Can cause temporary incapacitation or residual injury.
Red Flammability 1 Must be preheated before ignition can occur.
Yellow Instability 0 Normally stable, even under fire conditions.
White Special
(NFPA, 2010)
General Description
A clear colorless volatile liquid having a chloroform-like odor. Denser than water and is slightly soluble in water. Noncombustible. Used as a solvent, fumigant, in the manufacture of other chemicals, and for many other uses.

Hazards

The Hazard fields include special hazard alerts air and water reactions, fire hazards, health hazards, a reactivity profile, and details about reactive groups assignments and potentially incompatible absorbents. The information in CAMEO Chemicals comes from a variety of data sources.
Reactivity Alerts
none
Air & Water Reactions
Slightly soluble in water.
Fire Hazard
Special Hazards of Combustion Products: Toxic and irritating gases are produced in fire situations. (USCG, 1999)
Health Hazard
INHALATION: symptoms range from irritation of the nose and throat to nausea, an attitude of irresponsibility, blurred vision, and finally disturbance of central nervous system resulting in cardiac failure. Chronic exposure may cause organic injury. INGESTION: symptoms similar to inhalation. SKIN: defatting action can cause dermatitis. EYES: slightly irritating sensation and lachrymation. (USCG, 1999)
Reactivity Profile
It has been determined experimentally that mixtures of finely divided barium metal and a number of halogenated hydrocarbons possess an explosive capability. Specifically, impact sensitivity tests have shown that granular barium in contact with monofluorotrichloromethane, trichlorotrifluoroethane, carbon tetrachloride, trichloroethylene, or tetrachloroethylene can detonate (ASESB Pot. Incid. 39. 1968; Chem. Eng. News 46(9):38. 1968). It has been determined experimentally that a mixture of beryllium powder with carbon tetrachloride or with trichloroethylene will flash or spark on heavy impact (ASESB Pot. Incid. 39. 1968). A mixture of powdered magnesium with trichloroethylene or with carbon tetrachloride will flash or spark under heavy impact (ASESB Pot. Incid, 39. 1968).
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents

Use caution: Liquids with this reactive group classification have been known to react with the absorbent listed below. More info about absorbents, including situations to watch out for...

Response Recommendations

The Response Recommendation fields include isolation and evacuation distances, as well as recommendations for firefighting, non-fire response, protective clothing, and first aid. The information in CAMEO Chemicals comes from a variety of data sources.
Isolation and Evacuation
Excerpt from ERG Guide 160 [Halogenated Solvents]:

IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

LARGE SPILL: Consider initial downwind evacuation for at least 100 meters (330 feet).

FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 160 [Halogenated Solvents]:

SMALL FIRE: Dry chemical, CO2 or water spray.

LARGE FIRE: Dry chemical, CO2, alcohol-resistant foam or water spray. If it can be done safely, move undamaged containers away from the area around the fire. Dike runoff from fire control for later disposal.

FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 160 [Halogenated Solvents]:

ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. Stop leak if you can do it without risk.

SMALL LIQUID SPILL: Pick up with sand, earth or other non-combustible absorbent material.

LARGE SPILL: Dike far ahead of liquid spill for later disposal. Prevent entry into waterways, sewers, basements or confined areas. (ERG, 2024)
Protective Clothing
Excerpt from NIOSH Pocket Guide for Trichloroethyleneexternal link:

Skin: PREVENT SKIN CONTACT - Wear appropriate personal protective clothing to prevent skin contact.

Eyes: PREVENT EYE CONTACT - Wear appropriate eye protection to prevent eye contact.

Wash skin: WHEN CONTAMINATED - The worker should immediately wash the skin when it becomes contaminated.

Remove: WHEN WET OR CONTAMINATED - Work clothing that becomes wet or significantly contaminated should be removed and replaced.

Change: No recommendation is made specifying the need for the worker to change clothing after the workshift.

Provide:
• EYEWASH - Eyewash fountains should be provided in areas where there is any possibility that workers could be exposed to the substances; this is irrespective of the recommendation involving the wearing of eye protection.
• QUICK DRENCH - Facilities for quickly drenching the body should be provided within the immediate work area for emergency use where there is a possibility of exposure. [Note: It is intended that these facilities provide a sufficient quantity or flow of water to quickly remove the substance from any body areas likely to be exposed. The actual determination of what constitutes an adequate quick drench facility depends on the specific circumstances. In certain instances, a deluge shower should be readily available, whereas in others, the availability of water from a sink or hose could be considered adequate.] (NIOSH, 2024)
DuPont Tychem® Suit Fabrics
Tychem® Fabric Legend
QS = Tychem 2000 SFR
QC = Tychem 2000
SL = Tychem 4000
C3 = Tychem 5000
TF = Tychem 6000
TP = Tychem 6000 FR
RC = Tychem RESPONDER® CSM
TK = Tychem 10000
RF = Tychem 10000 FR
Testing Details
The fabric permeation data was generated for DuPont by a third party laboratory. Permeation data for industrial chemicals is obtained per ASTM F739. Normalized breakthrough times (the time at which the permeation rate exceeds 0.1 μg/cm2/min) are reported in minutes. All chemicals have been tested between approximately 20°C and 27°C unless otherwise stated. All chemicals have been tested at a concentration of greater than 95% unless otherwise stated.
Chemical warfare agents (Lewisite, Sarin, Soman, Sulfur Mustard, Tabun and VX Nerve Agent) have been tested at 22°C and 50% relative humidity per military standard MIL-STD-282. "Breakthrough time" for chemical warfare agents is defined as the time when the cumulative mass which permeated through the fabric exceeds the limit in MIL-STD-282 [either 1.25 or 4.0 μg/cm2].
A Caution from DuPont
This information is based upon technical data that DuPont believes to be reliable on the date issued. It is subject to revision as additional knowledge and experience are gained. The information reflects laboratory performance of fabrics, not complete garments, under controlled conditions. It is intended for informational use by persons having technical skill for evaluation under their specific end-use conditions, at their own discretion and risk. It is the user's responsibility to determine the level of toxicity and the proper personal protective equipment needed. Anyone intending to use this information should first verify that the garment selected is suitable for the intended use. In many cases, seams and closures have shorter breakthrough times and higher permeation rates than the fabric. If fabric becomes torn,abraded or punctured, or if seams or closures fail, or if attached gloves, visors, etc. are damaged, end user should discontinue use of garment to avoid potential exposure to chemical. Since conditions of use are outside our control, DuPont makes no warranties, express or implied, including, without limitation, no warranties of merchantability or fitness for a particular use and assume no liability in connection with any use of this information. This information is not intended as a license to operate under or a recommendation to infringe any patent, trademark or technical information of DuPont or others covering any material or its use.
Normalized Breakthrough Times (in Minutes)
Chemical CAS Number State QS QC SL C3 TF TP RC TK RF
Ethylene trichloride 79-01-6 Liquid imm >480 >480 >480 >480 >480 >480
Trichloro ethylene 79-01-6 Liquid imm >480 >480 >480 >480 >480 >480
> indicates greater than.
"imm" indicates immediate; having a normalized breakthrough time of 10 minutes or less.

Special Warning from DuPont: Tychem® and Tyvek® fabrics should not be used around heat, flames, sparks or in potentially flammable or explosive environments. Only...

...Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with aluminized outer suit) garments are designed and tested to help reduce burn injury during escape from a flash fire. Users of Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with aluminized outer suit) garments should not knowingly enter an explosive environment. Tychem® garments with attached socks must be worn inside protective outer footwear and are not suitable as outer footwear. These attached socks do not have adequate durability or slip resistance to be worn as the outer foot covering.

(DuPont, 2024)

First Aid
EYES: First check the victim for contact lenses and remove if present. Flush victim's eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim's eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop.

SKIN: IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water. IMMEDIATELY call a hospital or poison control center even if no symptoms (such as redness or irritation) develop. IMMEDIATELY transport the victim to a hospital for treatment after washing the affected areas.

INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. IMMEDIATELY call a physician and be prepared to transport the victim to a hospital even if no symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing.

INGESTION: DO NOT INDUCE VOMITING. Volatile chemicals have a high risk of being aspirated into the victim's lungs during vomiting which increases the medical problems. If the victim is conscious and not convulsing, give 1 or 2 glasses of water to dilute the chemical and IMMEDIATELY call a hospital or poison control center. IMMEDIATELY transport the victim to a hospital. If the victim is convulsing or unconscious, do not give anything by mouth, ensure that the victim's airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. IMMEDIATELY transport the victim to a hospital.

OTHER: Since this chemical is a known or suspected carcinogen you should contact a physician for advice regarding the possible long term health effects and potential recommendation for medical monitoring. Recommendations from the physician will depend upon the specific compound, its chemical, physical and toxicity properties, the exposure level, length of exposure, and the route of exposure. (NTP, 1992)

Physical Properties

The Physical Property fields include properties such as vapor pressure and boiling point, as well as explosive limits and toxic exposure thresholds The information in CAMEO Chemicals comes from a variety of data sources.

Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula:
  • C2HCl3
Flash Point: greater than 200°F (NTP, 1992)
Lower Explosive Limit (LEL): 12.5 % (NTP, 1992)
Upper Explosive Limit (UEL): 90 % (NTP, 1992)
Autoignition Temperature: 770°F (USCG, 1999)
Melting Point: -99°F (NTP, 1992)
Vapor Pressure: 60 mmHg at 68°F ; 77 mmHg at 77°F (NTP, 1992)
Vapor Density (Relative to Air): 4.53 (NTP, 1992) - Heavier than air; will sink
Specific Gravity: 1.46 at 68°F (USCG, 1999) - Denser than water; will sink
Boiling Point: 189°F at 760 mmHg (NTP, 1992)
Molecular Weight: 131.4 (NTP, 1992)
Water Solubility: less than 1 mg/mL at 70°F (NTP, 1992)
Ionization Energy/Potential: 9.45 eV (NIOSH, 2024)
IDLH: 1000 ppm ; A potential occupational carcinogen. (NIOSH, 2024)

AEGLs (Acute Exposure Guideline Levels)

Interim AEGLs for Trichloroethylene (79-01-6)
Exposure Period AEGL-1 AEGL-2 AEGL-3
10 minutes 260 ppm 960 ppm 6100 ppm
30 minutes 180 ppm 620 ppm 6100 ppm
60 minutes 130 ppm 450 ppm 3800 ppm
4 hours 84 ppm 270 ppm 1500 ppm
8 hours 77 ppm 240 ppm 970 ppm
(NAC/NRC, 2024)

ERPGs (Emergency Response Planning Guidelines)

Chemical ERPG-1 ERPG-2 ERPG-3
Trichloroethylene (79-01-6) 100 ppm star-in-circle icon indicates that odor should be detectable near ERPG-1. 500 ppm 5000 ppm
star-in-circle icon indicates that odor should be detectable near ERPG-1.
(AIHA, 2022)

PACs (Protective Action Criteria)

Chemical PAC-1 PAC-2 PAC-3
Trichloroethylene (79-01-6) 130 ppm 450 ppm 3800 ppm LEL = 80000 ppm
(DOE, 2024)

Regulatory Information

The Regulatory Information fields include information from the U.S. Environmental Protection Agency's Title III Consolidated List of Lists, the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility Anti-Terrorism Standards, and the U.S. Occupational Safety and Health Administration's Process Safety Management of Highly Hazardous Chemicals Standard List (see more about these data sources).

EPA Consolidated List of Lists

Regulatory Name CAS Number/
313 Category Code
EPCRA 302
EHS TPQ
EPCRA 304
EHS RQ
CERCLA RQ EPCRA 313
TRI
RCRA
Code
CAA 112(r)
RMP TQ
Trichloroethylene 79-01-6 100 pounds 313 U228

(EPA List of Lists, 2024)

CISA Chemical Facility Anti-Terrorism Standards (CFATS)

No regulatory information available.

OSHA Process Safety Management (PSM) Standard List

No regulatory information available.

Alternate Chemical Names

This section provides a listing of alternate names for this chemical, including trade names and synonyms.