Chemical Datasheet
NITROGEN TRIOXIDE |
![]() ![]() ![]() |
Chemical Identifiers
The
Chemical Identifier fields
include common identification numbers, the
NFPA diamond
U.S. Department of Transportation hazard labels, and a general
description of the chemical. The information in CAMEO Chemicals comes
from a variety of
data sources.
CAS Number | UN/NA Number | DOT Hazard Label | USCG CHRIS Code |
---|---|---|---|
|
|
none | |
NIOSH Pocket Guide | International Chem Safety Card | ||
none | none |
NFPA 704
Diamond | Hazard | Value | Description | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
3 | Can cause serious or permanent injury. | |||||||||
|
0 | Will not burn under typical fire conditions. | ||||||||||
|
0 | Normally stable, even under fire conditions. | ||||||||||
|
OX | Possesses oxidizing properties. |
(NFPA, 2010)
General Description
A blue liquid with a sharp, unpleasant chemical odor. Density 1.447 g / cm3. Low-boiling (boiling point 3.5°C) and held as a liquid by compression. Partially dissociates into NO and NO2. Strong irritant to skin, eyes and mucous membranes. Vapors very toxic by inhalation. Used in special purpose fuels. Under prolonged exposure to intense heat the container may rupture violently and rocket.
Hazards
The
Hazard fields
include
special hazard alerts
air and water
reactions, fire hazards, health hazards, a reactivity profile, and
details about
reactive groups assignments
and
potentially incompatible absorbents.
The information in CAMEO Chemicals comes from a variety of
data sources.
Reactivity Alerts
- Strong Oxidizing Agent
Air & Water Reactions
No rapid reaction with air. No rapid reaction with water.
Fire Hazard
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
Substance does not burn but will support combustion. Vapors from liquefied gas are initially heavier than air and spread along ground. These are strong oxidizers and will react vigorously or explosively with many materials including fuels. May ignite combustibles (wood, paper, oil, clothing, etc.). Some will react violently with air, moist air and/or water. Cylinders exposed to fire may vent and release toxic and/or corrosive gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket. (ERG, 2024)
Substance does not burn but will support combustion. Vapors from liquefied gas are initially heavier than air and spread along ground. These are strong oxidizers and will react vigorously or explosively with many materials including fuels. May ignite combustibles (wood, paper, oil, clothing, etc.). Some will react violently with air, moist air and/or water. Cylinders exposed to fire may vent and release toxic and/or corrosive gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket. (ERG, 2024)
Health Hazard
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
TOXIC and/or CORROSIVE; may be fatal if inhaled or absorbed through skin. Fire will produce irritating, corrosive and/or toxic gases. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Runoff from fire control or dilution water may cause environmental contamination. (ERG, 2024)
TOXIC and/or CORROSIVE; may be fatal if inhaled or absorbed through skin. Fire will produce irritating, corrosive and/or toxic gases. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Runoff from fire control or dilution water may cause environmental contamination. (ERG, 2024)
Reactivity Profile
NITROGEN TRIOXIDE is an oxidizing agent. Nonflammable but may cause fires when mixed with combustible materials. Reacts with reducing agents to generate heat and products that may be gaseous (causing pressurization of closed containers). The products may themselves be capable of further reactions (such as combustion in the air). Catalyzes ignition of phosphine gas [Edin. Roy. Soc. 13:88. 1935]. A mixture with caprolactam dissolved in acetic acid is explosive unless effectively cooled. Incompatible with phosphorus, or other reduced materials Reactivity likely to resemble that of nitrogen dioxide and nitrogen tetraoxide.
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents
Use caution: Liquids with this reactive group classification have been known to react with the absorbents listed below. More info about absorbents, including situations to watch out for...
- Cellulose-Based Absorbents
- Expanded Polymeric Absorbents
Response Recommendations
The
Response Recommendation fields
include isolation and evacuation distances, as well as recommendations for
firefighting, non-fire response, protective clothing, and first aid. The
information in CAMEO Chemicals comes from a variety of
data sources.
Isolation and Evacuation
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 100 meters (330 feet) in all directions.
SPILL: See ERG Table 1 - Initial Isolation and Protective Action Distances on the UN/NA 2421 datasheet.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 100 meters (330 feet) in all directions.
SPILL: See ERG Table 1 - Initial Isolation and Protective Action Distances on the UN/NA 2421 datasheet.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
CAUTION: These materials do not burn but will support combustion. Some will react violently with water.
SMALL FIRE: Contain fire and let burn. If fire must be fought, water spray or fog is recommended. Water only; no dry chemical, CO2 or Halon®. Do not get water inside containers. If it can be done safely, move undamaged containers away from the area around the fire. Damaged cylinders should be handled only by specialists.
FIRE INVOLVING TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
CAUTION: These materials do not burn but will support combustion. Some will react violently with water.
SMALL FIRE: Contain fire and let burn. If fire must be fought, water spray or fog is recommended. Water only; no dry chemical, CO2 or Halon®. Do not get water inside containers. If it can be done safely, move undamaged containers away from the area around the fire. Damaged cylinders should be handled only by specialists.
FIRE INVOLVING TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
Do not touch or walk through spilled material. Keep combustibles (wood, paper, oil, etc.) away from spilled material. Stop leak if you can do it without risk. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Do not direct water at spill or source of leak. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until gas has dispersed. Ventilate the area. (ERG, 2024)
Do not touch or walk through spilled material. Keep combustibles (wood, paper, oil, etc.) away from spilled material. Stop leak if you can do it without risk. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Do not direct water at spill or source of leak. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until gas has dispersed. Ventilate the area. (ERG, 2024)
Protective Clothing
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE. Structural firefighters' protective clothing provides thermal protection but only limited chemical protection. (ERG, 2024)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE. Structural firefighters' protective clothing provides thermal protection but only limited chemical protection. (ERG, 2024)
DuPont Tychem® Suit Fabrics
No information available.
First Aid
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
Refer to the "General First Aid" section. Specific First Aid: Clothing frozen to the skin should be thawed before being removed. (ERG, 2024)
Refer to the "General First Aid" section. Specific First Aid: Clothing frozen to the skin should be thawed before being removed. (ERG, 2024)
Physical Properties
The
Physical Property fields
include properties such as vapor pressure and
boiling point, as well as explosive limits and
toxic exposure thresholds
The information in CAMEO Chemicals comes from a variety of
data sources.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula: |
|
Flash Point: data unavailable
Lower Explosive Limit (LEL): data unavailable
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature: data unavailable
Melting Point: data unavailable
Vapor Pressure: data unavailable
Vapor Density (Relative to Air): data unavailable
Specific Gravity: data unavailable
Boiling Point: data unavailable
Molecular Weight:
76.011
Water Solubility: data unavailable
Ionization Energy/Potential: data unavailable
IDLH: data unavailable
AEGLs (Acute Exposure Guideline Levels)
No AEGL information available.ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.PACs (Protective Action Criteria)
Chemical | PAC-1 | PAC-2 | PAC-3 |
---|---|---|---|
Nitrogen trioxide; (Dinitrogen trioxide) (10544-73-7) | 0.5 ppm | 12 ppm | 20 ppm |
(DOE, 2024)
Regulatory Information
The
Regulatory Information fields
include information from
the U.S. Environmental Protection Agency's Title III Consolidated List of
Lists,
the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility
Anti-Terrorism Standards,
and the U.S. Occupational Safety and Health Administration's
Process Safety Management of Highly Hazardous Chemicals Standard List
(see more about these
data sources).
EPA Consolidated List of Lists
No regulatory information available.CISA Chemical Facility Anti-Terrorism Standards (CFATS)
RELEASE | THEFT | SABOTAGE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chemical of Interest | CAS Number | Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Nitrogen trioxide | 10544-73-7 | 3.83 % | 15 pounds | WME |
- WME = weapons of mass effect.
(CISA, 2007)
OSHA Process Safety Management (PSM) Standard List
Chemical Name | CAS Number | Threshold Quantity (TQ) |
---|---|---|
Nitrogen Trioxide | 10544-73-7 | 250 pounds |
(OSHA, 2019)
Alternate Chemical Names
This section provides a listing of alternate names for this chemical,
including trade names and synonyms.
- DINITROGEN TRIOXIDE
- NITROGEN SESQUIOXIDE
- NITROGEN TRIOXIDE
- NITROGEN TRIOXIDE (N2O3)
- NITROUS ANHYDRIDE