Add to MyChemicals Print Friendly Page
Chemical Datasheet

METHYL FLUORIDE

2.1 - Flammable gas
Chemical Identifiers | Hazards | Response Recommendations | Physical Properties | Regulatory Information | Alternate Chemical Names

Chemical Identifiers

The Chemical Identifier fields include common identification numbers, the NFPA diamond U.S. Department of Transportation hazard labels, and a general description of the chemical. The information in CAMEO Chemicals comes from a variety of data sources.
CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code
  • 593-53-3   (METHYL FLUORIDE)
  • Flammable Gas
none
NIOSH Pocket Guide International Chem Safety Card
none none
NFPA 704
data unavailable
General Description
Methyl fluoride (or fluoromethane) is a colorless flammable gas which is heavier than air. It has an agreeable ether-like odor. It is narcotic in high concentrations. It burns with evolution of hydrogen fluoride. The flame is colorless, similar to alcohol. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket.

Hazards

The Hazard fields include special hazard alerts air and water reactions, fire hazards, health hazards, a reactivity profile, and details about reactive groups assignments and potentially incompatible absorbents. The information in CAMEO Chemicals comes from a variety of data sources.
Reactivity Alerts
Air & Water Reactions
Highly flammable. It burns in air with evolution of hydrogen fluoride.
Fire Hazard
Excerpt from ERG Guide 115 [Gases - Flammable (Including Refrigerated Liquids)]:

EXTREMELY FLAMMABLE. Will be easily ignited by heat, sparks or flames. Will form explosive mixtures with air. Vapors from liquefied gas are initially heavier than air and spread along ground. CAUTION: Hydrogen (UN1049), Deuterium (UN1957), Hydrogen, refrigerated liquid (UN1966), Methane (UN1971) and Hydrogen and Methane mixture, compressed (UN2034) are lighter than air and will rise. Hydrogen and Deuterium fires are difficult to detect since they burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.) Vapors may travel to source of ignition and flash back. Cylinders exposed to fire may vent and release flammable gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket. CAUTION: When LNG - Liquefied natural gas (UN1972) is released on or near water, product may vaporize explosively. (ERG, 2024)
Health Hazard
Excerpt from ERG Guide 115 [Gases - Flammable (Including Refrigerated Liquids)]:

Vapors may cause dizziness or asphyxiation without warning, especially when in closed or confined areas. Some may be irritating if inhaled at high concentrations. Contact with gas, liquefied gas or cryogenic liquids may cause burns, severe injury and/or frostbite. Fire may produce irritating and/or toxic gases. (ERG, 2024)
Reactivity Profile
Halogenated aliphatic compounds, such as METHYL FLUORIDE, are moderately or very reactive. Halogenated organics generally become less reactive as more of their hydrogen atoms are replaced with halogen atoms. Low molecular weight haloalkanes are highly flammable and can react with some metals to form dangerous products. Materials in this group are incompatible with strong oxidizing and reducing agents. Also, they are incompatible with many amines, nitrides, azo/diazo compounds, alkali metals, and epoxides. The prolonged mixing of halogenated solvents with metallic or other azides may cause the slow formation of explosive azides, for example methylene chloride and sodium azide, [Chem. Eng. News, 1986, 64(51)].
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents

No information available.

Response Recommendations

The Response Recommendation fields include isolation and evacuation distances, as well as recommendations for firefighting, non-fire response, protective clothing, and first aid. The information in CAMEO Chemicals comes from a variety of data sources.
Isolation and Evacuation
Excerpt from ERG Guide 115 [Gases - Flammable (Including Refrigerated Liquids)]:

IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

LARGE SPILL: Consider initial downwind evacuation for at least 800 meters (1/2 mile).

FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions. In fires involving Liquefied Petroleum Gases (LPG) (UN1075), Butane (UN1011), Butylene (UN1012), Isobutylene (UN1055), Propylene (UN1077), Isobutane (UN1969), and Propane (UN1978), also refer to the "BLEVE - Safety Precautions" section. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 115 [Gases - Flammable (Including Refrigerated Liquids)]:

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED. CAUTION: Hydrogen (UN1049), Deuterium (UN1957), Hydrogen, refrigerated liquid (UN1966) and Hydrogen and Methane mixture, compressed (UN2034) will burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.).

SMALL FIRE: Dry chemical or CO2.

LARGE FIRE: Water spray or fog. If it can be done safely, move undamaged containers away from the area around the fire. CAUTION: For LNG - Liquefied natural gas (UN1972) pool fires, DO NOT USE water. Use dry chemical or high-expansion foam.

FIRE INVOLVING TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 115 [Gases - Flammable (Including Refrigerated Liquids)]:

ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Do not touch or walk through spilled material. Stop leak if you can do it without risk. If possible, turn leaking containers so that gas escapes rather than liquid. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Do not direct water at spill or source of leak. CAUTION: For LNG - Liquefied natural gas (UN1972), DO NOT apply water, regular or alcohol-resistant foam directly on spill. Use a high-expansion foam if available to reduce vapors. Prevent spreading of vapors through sewers, ventilation systems and confined areas. Isolate area until gas has dispersed. CAUTION: When in contact with refrigerated/cryogenic liquids, many materials become brittle and are likely to break without warning. (ERG, 2024)
Protective Clothing
Excerpt from ERG Guide 115 [Gases - Flammable (Including Refrigerated Liquids)]:

Wear positive pressure self-contained breathing apparatus (SCBA). Structural firefighters' protective clothing provides thermal protection but only limited chemical protection. Always wear thermal protective clothing when handling refrigerated/cryogenic liquids. (ERG, 2024)
DuPont Tychem® Suit Fabrics
Tychem® Fabric Legend
QS = Tychem 2000 SFR
QC = Tychem 2000
SL = Tychem 4000
C3 = Tychem 5000
TF = Tychem 6000
TP = Tychem 6000 FR
RC = Tychem RESPONDER® CSM
TK = Tychem 10000
RF = Tychem 10000 FR
Testing Details
The fabric permeation data was generated for DuPont by a third party laboratory. Permeation data for industrial chemicals is obtained per ASTM F739. Normalized breakthrough times (the time at which the permeation rate exceeds 0.1 μg/cm2/min) are reported in minutes. All chemicals have been tested between approximately 20°C and 27°C unless otherwise stated. All chemicals have been tested at a concentration of greater than 95% unless otherwise stated.
Chemical warfare agents (Lewisite, Sarin, Soman, Sulfur Mustard, Tabun and VX Nerve Agent) have been tested at 22°C and 50% relative humidity per military standard MIL-STD-282. "Breakthrough time" for chemical warfare agents is defined as the time when the cumulative mass which permeated through the fabric exceeds the limit in MIL-STD-282 [either 1.25 or 4.0 μg/cm2].
A Caution from DuPont
This information is based upon technical data that DuPont believes to be reliable on the date issued. It is subject to revision as additional knowledge and experience are gained. The information reflects laboratory performance of fabrics, not complete garments, under controlled conditions. It is intended for informational use by persons having technical skill for evaluation under their specific end-use conditions, at their own discretion and risk. It is the user's responsibility to determine the level of toxicity and the proper personal protective equipment needed. Anyone intending to use this information should first verify that the garment selected is suitable for the intended use. In many cases, seams and closures have shorter breakthrough times and higher permeation rates than the fabric. If fabric becomes torn,abraded or punctured, or if seams or closures fail, or if attached gloves, visors, etc. are damaged, end user should discontinue use of garment to avoid potential exposure to chemical. Since conditions of use are outside our control, DuPont makes no warranties, express or implied, including, without limitation, no warranties of merchantability or fitness for a particular use and assume no liability in connection with any use of this information. This information is not intended as a license to operate under or a recommendation to infringe any patent, trademark or technical information of DuPont or others covering any material or its use.
Normalized Breakthrough Times (in Minutes)
Chemical CAS Number State QS QC SL C3 TF TP RC TK RF
Methyl fluoride 593-53-3 Vapor >480 >480 >480
> indicates greater than.

Special Warning from DuPont: Tychem® and Tyvek® fabrics should not be used around heat, flames, sparks or in potentially flammable or explosive environments. Only...

...Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with aluminized outer suit) garments are designed and tested to help reduce burn injury during escape from a flash fire. Users of Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with aluminized outer suit) garments should not knowingly enter an explosive environment. Tychem® garments with attached socks must be worn inside protective outer footwear and are not suitable as outer footwear. These attached socks do not have adequate durability or slip resistance to be worn as the outer foot covering.

(DuPont, 2024)

First Aid
Excerpt from ERG Guide 115 [Gases - Flammable (Including Refrigerated Liquids)]:

Refer to the "General First Aid" section. Specific First Aid: Clothing frozen to the skin should be thawed before being removed. In case of contact with liquefied gas, only medical personnel should attempt thawing frosted parts. In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin. (ERG, 2024)

Physical Properties

The Physical Property fields include properties such as vapor pressure and boiling point, as well as explosive limits and toxic exposure thresholds The information in CAMEO Chemicals comes from a variety of data sources.

Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula:
  • CH3F
Flash Point: data unavailable
Lower Explosive Limit (LEL): data unavailable
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature: data unavailable
Melting Point: data unavailable
Vapor Pressure: data unavailable
Vapor Density (Relative to Air): data unavailable
Specific Gravity: data unavailable
Boiling Point: data unavailable
Molecular Weight: 34.0332
Water Solubility: data unavailable
Ionization Energy/Potential: data unavailable
IDLH: data unavailable

AEGLs (Acute Exposure Guideline Levels)

No AEGL information available.

ERPGs (Emergency Response Planning Guidelines)

No ERPG information available.

PACs (Protective Action Criteria)

Chemical PAC-1 PAC-2 PAC-3
Methyl fluoride; (Fluoromethane) (593-53-3) 13 mg/m3 150 mg/m3 900 mg/m3
(DOE, 2024)

Regulatory Information

The Regulatory Information fields include information from the U.S. Environmental Protection Agency's Title III Consolidated List of Lists, the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility Anti-Terrorism Standards, and the U.S. Occupational Safety and Health Administration's Process Safety Management of Highly Hazardous Chemicals Standard List (see more about these data sources).

EPA Consolidated List of Lists

No regulatory information available.

CISA Chemical Facility Anti-Terrorism Standards (CFATS)

No regulatory information available.

OSHA Process Safety Management (PSM) Standard List

No regulatory information available.

Alternate Chemical Names

This section provides a listing of alternate names for this chemical, including trade names and synonyms.