Chemical Datasheet
COAL TAR OIL, [HEAVY DISTILLATE] |
Chemical Identifiers
The
Chemical Identifier fields
include common identification numbers, the
NFPA diamond
U.S. Department of Transportation hazard labels, and a general
description of the chemical. The information in CAMEO Chemicals comes
from a variety of
data sources.
CAS Number | UN/NA Number | DOT Hazard Label | USCG CHRIS Code |
---|---|---|---|
|
|
||
NIOSH Pocket Guide | International Chem Safety Card | ||
Naphtha (coal tar) | none |
NFPA 704
data unavailable
General Description
A clear colorless to dark brownish colored liquid with an aromatic odor. Less volatile fraction separated from coal tar by distillation. Contains naphthalene, acenaphthene, methylnaphthalenes, fluorene, phenol, cresols, pyridine, picolines, among other substances. Flash point greater than 100°F. Toxic by inhalation and skin absorption. Less dense than water and insoluble in water. Vapors heavier than air.
Hazards
The
Hazard fields
include
special hazard alerts
air and water
reactions, fire hazards, health hazards, a reactivity profile, and
details about
reactive groups assignments
and
potentially incompatible absorbents.
The information in CAMEO Chemicals comes from a variety of
data sources.
Reactivity Alerts
- Highly Flammable
Air & Water Reactions
Highly flammable. Insoluble in water.
Fire Hazard
Excerpt from ERG Guide 128 [Flammable Liquids (Water-Immiscible)]:
HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.). Vapor explosion hazard indoors, outdoors or in sewers. Those substances designated with a (P) may polymerize explosively when heated or involved in a fire. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids will float on water. Substance may be transported hot. For hybrid vehicles, ERG Guide 147 (lithium ion or sodium ion batteries) or ERG Guide 138 (sodium batteries) should also be consulted. If molten aluminum is involved, refer to ERG Guide 169. (ERG, 2024)
HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.). Vapor explosion hazard indoors, outdoors or in sewers. Those substances designated with a (P) may polymerize explosively when heated or involved in a fire. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids will float on water. Substance may be transported hot. For hybrid vehicles, ERG Guide 147 (lithium ion or sodium ion batteries) or ERG Guide 138 (sodium batteries) should also be consulted. If molten aluminum is involved, refer to ERG Guide 169. (ERG, 2024)
Health Hazard
Primarily a narcotic, causing unconsciousness in high concentrations. The symptoms of acute benzene poisoning are not likely, since the compound has components other than benzene. (USCG, 1999)
Reactivity Profile
Contains saturated aliphatic hydrocarbons, which may be incompatible with strong oxidizing agents like nitric acid. Charring of the hydrocarbon may occur followed by ignition of unreacted hydrocarbon and other nearby combustibles. In other settings, aliphatic saturated hydrocarbons are mostly unreactive. They are not affected by aqueous solutions of acids, alkalis, most oxidizing agents, and most reducing agents. When heated sufficiently or when ignited in the presence of air, oxygen or strong oxidizing agents, they burn exothermically to produce carbon dioxide and water. May be ignited by strong oxidizers.
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents
No information available.
Response Recommendations
The
Response Recommendation fields
include isolation and evacuation distances, as well as recommendations for
firefighting, non-fire response, protective clothing, and first aid. The
information in CAMEO Chemicals comes from a variety of
data sources.
Isolation and Evacuation
Excerpt from ERG Guide 128 [Flammable Liquids (Water-Immiscible)]:
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 50 meters (150 feet) in all directions.
LARGE SPILL: Consider initial downwind evacuation for at least 300 meters (1000 feet).
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 50 meters (150 feet) in all directions.
LARGE SPILL: Consider initial downwind evacuation for at least 300 meters (1000 feet).
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 128 [Flammable Liquids (Water-Immiscible)]:
CAUTION: The majority of these products have a very low flash point. Use of water spray when fighting fire may be inefficient. CAUTION: For mixtures containing alcohol or polar solvent, alcohol-resistant foam may be more effective.
SMALL FIRE: Dry chemical, CO2, water spray or regular foam. If regular foam is ineffective or unavailable, use alcohol-resistant foam.
LARGE FIRE: Water spray, fog or regular foam. If regular foam is ineffective or unavailable, use alcohol-resistant foam. Avoid aiming straight or solid streams directly onto the product. If it can be done safely, move undamaged containers away from the area around the fire.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. For petroleum crude oil, do not spray water directly into a breached tank car. This can lead to a dangerous boil over. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
CAUTION: The majority of these products have a very low flash point. Use of water spray when fighting fire may be inefficient. CAUTION: For mixtures containing alcohol or polar solvent, alcohol-resistant foam may be more effective.
SMALL FIRE: Dry chemical, CO2, water spray or regular foam. If regular foam is ineffective or unavailable, use alcohol-resistant foam.
LARGE FIRE: Water spray, fog or regular foam. If regular foam is ineffective or unavailable, use alcohol-resistant foam. Avoid aiming straight or solid streams directly onto the product. If it can be done safely, move undamaged containers away from the area around the fire.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. For petroleum crude oil, do not spray water directly into a breached tank car. This can lead to a dangerous boil over. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 128 [Flammable Liquids (Water-Immiscible)]:
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Do not touch or walk through spilled material. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. A vapor-suppressing foam may be used to reduce vapors. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. Use clean, non-sparking tools to collect absorbed material.
LARGE SPILL: Dike far ahead of liquid spill for later disposal. Water spray may reduce vapor, but may not prevent ignition in closed spaces. (ERG, 2024)
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Do not touch or walk through spilled material. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. A vapor-suppressing foam may be used to reduce vapors. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. Use clean, non-sparking tools to collect absorbed material.
LARGE SPILL: Dike far ahead of liquid spill for later disposal. Water spray may reduce vapor, but may not prevent ignition in closed spaces. (ERG, 2024)
Protective Clothing
Excerpt from NIOSH Pocket Guide for Naphtha (coal tar):
Skin: PREVENT SKIN CONTACT - Wear appropriate personal protective clothing to prevent skin contact.
Eyes: PREVENT EYE CONTACT - Wear appropriate eye protection to prevent eye contact.
Wash skin: WHEN CONTAMINATED - The worker should immediately wash the skin when it becomes contaminated.
Remove: WHEN WET OR CONTAMINATED - Work clothing that becomes wet or significantly contaminated should be removed and replaced.
Change: No recommendation is made specifying the need for the worker to change clothing after the workshift. (NIOSH, 2024)
Skin: PREVENT SKIN CONTACT - Wear appropriate personal protective clothing to prevent skin contact.
Eyes: PREVENT EYE CONTACT - Wear appropriate eye protection to prevent eye contact.
Wash skin: WHEN CONTAMINATED - The worker should immediately wash the skin when it becomes contaminated.
Remove: WHEN WET OR CONTAMINATED - Work clothing that becomes wet or significantly contaminated should be removed and replaced.
Change: No recommendation is made specifying the need for the worker to change clothing after the workshift. (NIOSH, 2024)
DuPont Tychem® Suit Fabrics
Tychem® Fabric Legend
QS = Tychem 2000 SFR |
QC = Tychem 2000 |
SL = Tychem 4000 |
C3 = Tychem 5000 |
TF = Tychem 6000 |
TP = Tychem 6000 FR |
RC = Tychem RESPONDER® CSM |
TK = Tychem 10000 |
RF = Tychem 10000 FR |
Testing Details
The fabric permeation data was generated for DuPont by a third party
laboratory. Permeation data for industrial chemicals is obtained per
ASTM F739. Normalized breakthrough times (the time at which the
permeation rate exceeds 0.1 μg/cm2/min) are reported in minutes. All
chemicals have been tested between approximately 20°C and 27°C unless
otherwise stated. All chemicals have been tested at a concentration of
greater than 95% unless otherwise stated.
Chemical warfare agents (Lewisite, Sarin, Soman, Sulfur Mustard, Tabun
and VX Nerve Agent) have been tested at 22°C and 50% relative humidity
per military standard MIL-STD-282. "Breakthrough time" for chemical
warfare agents is defined as the time when the cumulative mass which
permeated through the fabric exceeds the limit in MIL-STD-282 [either
1.25 or 4.0 μg/cm2].
A Caution from DuPont
This information is based upon technical data that DuPont believes to
be reliable on the date issued. It is subject to revision as additional
knowledge and experience are gained. The information reflects
laboratory performance of fabrics, not complete garments, under
controlled conditions. It is intended for informational use by persons
having technical skill for evaluation under their specific end-use
conditions, at their own discretion and risk. It is the user's
responsibility to determine the level of toxicity and the proper
personal protective equipment needed. Anyone intending to use this
information should first verify that the garment selected is suitable
for the intended use. In many cases, seams and closures have shorter
breakthrough times and higher permeation rates than the fabric. If
fabric becomes torn,abraded or punctured, or if seams or closures fail,
or if attached gloves, visors, etc. are damaged, end user should
discontinue use of garment to avoid potential exposure to chemical.
Since conditions of use are outside our control, DuPont makes no
warranties, express or implied, including, without limitation, no
warranties of merchantability or fitness for a particular use and
assume no liability in connection with any use of this information.
This information is not intended as a license to operate under or a
recommendation to infringe any patent, trademark or technical
information of DuPont or others covering any material or its use.
Chemical | CAS Number | State | QS | QC | SL | C3 | TF | TP | RC | TK | RF |
---|---|---|---|---|---|---|---|---|---|---|---|
VM & P Naphtha | 8030-30-6 | Liquid | imm | >480 | >480 | >480 |
> indicates greater than.
"imm" indicates immediate; having a normalized breakthrough time of 10 minutes or less.
"imm" indicates immediate; having a normalized breakthrough time of 10 minutes or less.
Special Warning from DuPont: Tychem® and Tyvek® fabrics should not be used around heat, flames, sparks or in potentially flammable or explosive environments. Only...
...Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T
(with aluminized outer suit) garments are designed and tested to help
reduce burn injury during escape from a flash fire. Users of Tychem®
ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with
aluminized outer suit) garments should not knowingly enter an explosive
environment. Tychem® garments with attached socks must be worn inside
protective outer footwear and are not suitable as outer footwear. These
attached socks do not have adequate durability or slip resistance to be
worn as the outer foot covering.
(DuPont, 2024)
First Aid
Excerpt from NIOSH Pocket Guide for Naphtha (coal tar):
Eye: IRRIGATE IMMEDIATELY - If this chemical contacts the eyes, immediately wash (irrigate) the eyes with large amounts of water, occasionally lifting the lower and upper lids. Get medical attention immediately.
Skin: SOAP WASH PROMPTLY - If this chemical contacts the skin, promptly wash the contaminated skin with soap and water. If this chemical penetrates the clothing, promptly remove the clothing and wash the skin with soap and water. Get medical attention promptly.
Breathing: RESPIRATORY SUPPORT - If a person breathes large amounts of this chemical, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible.
Swallow: MEDICAL ATTENTION IMMEDIATELY - If this chemical has been swallowed, get medical attention immediately. (NIOSH, 2024)
Eye: IRRIGATE IMMEDIATELY - If this chemical contacts the eyes, immediately wash (irrigate) the eyes with large amounts of water, occasionally lifting the lower and upper lids. Get medical attention immediately.
Skin: SOAP WASH PROMPTLY - If this chemical contacts the skin, promptly wash the contaminated skin with soap and water. If this chemical penetrates the clothing, promptly remove the clothing and wash the skin with soap and water. Get medical attention promptly.
Breathing: RESPIRATORY SUPPORT - If a person breathes large amounts of this chemical, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible.
Swallow: MEDICAL ATTENTION IMMEDIATELY - If this chemical has been swallowed, get medical attention immediately. (NIOSH, 2024)
Physical Properties
The
Physical Property fields
include properties such as vapor pressure and
boiling point, as well as explosive limits and
toxic exposure thresholds
The information in CAMEO Chemicals comes from a variety of
data sources.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula:
data unavailable
Flash Point:
107°F
(USCG, 1999)
Lower Explosive Limit (LEL): data unavailable
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature: data unavailable
Melting Point: data unavailable
Vapor Pressure:
6.72 mmHg
(USCG, 1999)
Vapor Density (Relative to Air): data unavailable
Specific Gravity:
0.86 to 0.88
at 68°F
(USCG, 1999)
Boiling Point:
200 to 500°F
at 760 mmHg
(USCG, 1999)
Molecular Weight:
110
(approx)
(NIOSH, 2024)
Water Solubility:
Insoluble
(NIOSH, 2024)
Ionization Energy/Potential: data unavailable
IDLH:
1000 ppm
; Based on 10% of the lower explosive limit. [From NPG: Naphtha (coal tar)]
(NIOSH, 2024)
AEGLs (Acute Exposure Guideline Levels)
No AEGL information available.ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.PACs (Protective Action Criteria)
Chemical | PAC-1 | PAC-2 | PAC-3 |
---|---|---|---|
Naphtha (coal tar); includes solvent naphtha, petroleum (64742-88-7), naphtha (petroleum) light aliphatic, rubber solvent (64742-89-8), heavy catalytic cracked (64741-54-4), light straight run (64741-46-4), heavy aliphatic solvent (64742-96-7), high flash aromatic and aromatic solvent naphtha (64742-95-6) (8030-30-6) | 1200 mg/m3 | 6700 mg/m3 | 40000 mg/m3 |
(DOE, 2024)
Regulatory Information
The
Regulatory Information fields
include information from
the U.S. Environmental Protection Agency's Title III Consolidated List of
Lists,
the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility
Anti-Terrorism Standards,
and the U.S. Occupational Safety and Health Administration's
Process Safety Management of Highly Hazardous Chemicals Standard List
(see more about these
data sources).
EPA Consolidated List of Lists
No regulatory information available.CISA Chemical Facility Anti-Terrorism Standards (CFATS)
No regulatory information available.OSHA Process Safety Management (PSM) Standard List
No regulatory information available.Alternate Chemical Names
This section provides a listing of alternate names for this chemical,
including trade names and synonyms.
- AMSCO H-J
- AMSCO H-SB
- COAL TAR OIL, [HEAVY DISTILLATE]
- CRUDE SOLVENT COAL TAR NAPHTHA
- EXXON NAPHTHA 5
- HI-FLASH NAPHTHA
- HIGH SOLVENT NAPHTHA
- KWICK DRY
- MIXTURE OF BENZENE, TOLUENE, XYLENES
- NAPHTHA
- NAPHTHA (COAL TAR)
- NAPHTHA 5