Print
Chemical Datasheet

BROMOACETIC ACID, SOLUTION

8 - Corrosive

Chemical Identifiers

CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code
  • 79-08-3
  • 1938
  • Corrosive
none
NIOSH Pocket Guide International Chem Safety Card
none none
NFPA 704
data unavailable
General Description
Aqueous solution.

Hazards

Reactivity Alerts
none
Air & Water Reactions
Water soluble.
Fire Hazard
Excerpt from 156 Polymerizable warning [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:

Combustible material: may burn but does not ignite readily. Substance will react with water (some violently) releasing flammable, toxic or corrosive gases and runoff. When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards. Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.). Vapors may travel to source of ignition and flash back. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated or if contaminated with water. (ERG, 2020)
Health Hazard
Excerpt from 156 Polymerizable warning [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:

TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns or death. Contact with molten substance may cause severe burns to skin and eyes. Reaction with water or moist air will release toxic, corrosive or flammable gases. Reaction with water may generate much heat that will increase the concentration of fumes in the air. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination. (ERG, 2020)
Reactivity Profile
Carboxylic acids, such as BROMOACETIC ACID, donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents

No information available.

Response Recommendations

Isolation and Evacuation
Excerpt from 156 Polymerizable warning [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:

IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

SPILL: Increase the immediate precautionary measure distance, in the downwind direction, as necessary.

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2020)
Firefighting
Excerpt from 156 Polymerizable warning [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:

Note: Most foams will react with the material and release corrosive/toxic gases.

SMALL FIRE: CO2, dry chemical, dry sand, alcohol-resistant foam.

LARGE FIRE: Water spray, fog or alcohol-resistant foam. FOR CHLOROSILANES, DO NOT USE WATER; use AFFF alcohol-resistant medium-expansion foam. If it can be done safely, move undamaged containers away from the area around the fire. Avoid aiming straight or solid streams directly onto the product.

FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. (ERG, 2020)
Non-Fire Response
Excerpt from 156 Polymerizable warning [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:

ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. A vapor-suppressing foam may be used to reduce vapors. FOR CHLOROSILANES, use AFFF alcohol-resistant medium-expansion foam to reduce vapors. DO NOT GET WATER on spilled substance or inside containers. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Prevent entry into waterways, sewers, basements or confined areas.

SMALL SPILL: Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain. Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal. (ERG, 2020)
Protective Clothing
Excerpt from ERG Guide 156 [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:

Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE. Structural firefighters' protective clothing provides thermal protection but only limited chemical protection. (ERG, 2020)
DuPont Tychem® Suit Fabrics
No information available.
First Aid
Excerpt from 156 Polymerizable warning [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:

Call 911 or emergency medical service. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. Move victim to fresh air if it can be done safely. Give artificial respiration if victim is not breathing. Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim calm and warm. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. (ERG, 2020)

Physical Properties

Chemical Formula:
  • C2H3BrO2 (aqueous)
Flash Point: data unavailable
Lower Explosive Limit (LEL): data unavailable
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature: data unavailable
Melting Point: data unavailable
Vapor Pressure: data unavailable
Vapor Density (Relative to Air): data unavailable
Specific Gravity: data unavailable
Boiling Point: data unavailable
Molecular Weight: data unavailable
Water Solubility: data unavailable
Ionization Energy/Potential: data unavailable
IDLH: data unavailable

AEGLs (Acute Exposure Guideline Levels)

No AEGL information available.

ERPGs (Emergency Response Planning Guidelines)

No ERPG information available.

PACs (Protective Action Criteria)

Chemical PAC-1 PAC-2 PAC-3
Bromoacetic acid (79-08-3) 0.023 mg/m3 0.26 mg/m3 1.5 mg/m3
(DOE, 2018)

Regulatory Information

EPA Consolidated List of Lists

No regulatory information available.

CISA Chemical Facility Anti-Terrorism Standards (CFATS)

No regulatory information available.

OSHA Process Safety Management (PSM) Standard List

No regulatory information available.

Alternate Chemical Names