LAURIC ACID

CAUTIONARY RESPONSE INFORMATION

Common Synonyms

- Laurostearic acid
 - Hystrene 9512
 - Hydrofol acid 1255 or 1295
 - Duodecylic acid
 - n-Dodecanoic acid
 - C-1297

Solid
White
Slight odor of bay oil

Exposure

Fire
Combustible.
Water may be ineffective on fire.
Wear self-contained breathing apparatus and protective clothing.
Extinguish with dry chemical, alcohol foam, or CO₂.<n
Exposure

Water Pollution
May be dangerous to aquatic life in high concentrations.
May be dangerous if it enters water intakes.
Notify local health and wildlife officials.
Notify operators of nearby water intakes.

1. **CORRECTIVE RESPONSE ACTIONS**

1. **Discharge**

3. HEALTH HAZARDS

3.1 Personal Protective Equipment
Respirator, chemical safety goggles, boots and heavy rubber gloves.

3.2 Symptoms Following Exposure
May be harmful by inhalation, ingestion or skin absorption. Vapor or mist is irritating to eyes, mucous membrane and upper respiratory tract. Causes eye and skin irritation.

3.3 Treatment of Exposure

Inhalation
Call for medical aid. Remove victim to fresh air. If breathing is difficult, give oxygen.

Ingestion
Remove contaminated clothing and shoes. Flush affected areas with plenty of water. If IN EYES, hold eyelids open and flush with plenty of water.

3.4 TLV-TWA

3.5 TLV-STEL

3.6 TLV-Ceiling

3.7 Toxicity by Ingestion

3.8 Toxicity by Inhalation

3.9 Chronic Toxicity

3.10 Vapor (Gas) Irritant Characteristics

3.11 Liquid or Solid Characteristics

3.12 Odor Threshold

3.13 IDLH Value

3.14 OSHA PEL-TWA

3.15 OSHA PEL-STEL

3.16 OSHA PEL-Ceiling

3.17 EPA AEGL

4. FIRE HAZARDS

4. **Flash Point**

4.2 Flammable Limits in Air:

4.3 Fire Extinguishing Agents:
Carbon dioxide, dry chemical, alcohol foam, water spray.

4.4 Fire Extinguishing Agents Not to Be Used:

4.5 Special Hazards of Combustion Products:

4.6 Behavior in Fire:

4.7 Auto Ignition Temperature:

4.8 Electrical Hazards:

4.9 Burning Rate:

4.10 Flammable Limits in Lower Explosive Limit:

4.11 Stoichiometric Air to Fuel Ratio:

4.12 Flame Temperature:

4.13 Combustion Molar Ratio (Reactant to Product):

4.14 Minimum Oxygen Concentration for Combustion (MOC): Not listed

5. CHEMICAL REACTIVITY

5. **Reactivity with Water**

5.2 Reactivity with Common Materials:

5.3 Stability During Transport:

5.4 Neutralizing Agents for Acids and Alkaline:

5.5 Polymerization:

5.6 Inhibitor of Polymerization:

6. WATER POLLUTION

6. **Aquatic Toxicity**

6.2 Waterfowl Toxicity:

6.3 Biological Oxygen Demand (BOD):

6.4 Food Chain Concentration Potential:

6.5 GESAMP Hazard Profile:

6.6 Waterfowl: Not listed

6.7 GESAMP Hazard Profile: Not listed

7. SHIPPING INFORMATION

7. **Grades of Purity**

7.2 Storage Temperature:

7.3 Inert Atmosphere:

7.4 Venting:

7.5 IMO Pollution Category:

7.6 Ship Type:

7.7 Barge Hull Type:

8. HAZARD CLASSIFICATIONS

8. **40 CFR**

8.2 49 CFR Class:

8.4 Marine Pollutant:

8.5 NFPA Hazard Classification:

8.6 EPA Reportable Quantity:

8.7 EPA Pollution Category:

8.8 RCRA Waste Number:

8.9 EPA FWPCA List:

9. PHYSICAL & CHEMICAL PROPERTIES

9.1 Physical State at 15° C and 1 atm:

9.2 Molecular Weight:

9.3 Boiling Point:

9.4 Minimum Oxygen Concentration for Combustion (MOC): Not listed

9.5 Critical Pressure:

9.6 Critical Temperature:

9.7 Specific Gravity:

9.8 Liquid Surface Tension:

9.9 Liquid Water Interface Tension:

9.10 Vapor (Gas) Specific Gravity:

9.11 Ratio of Specific Heats of Vapor (Gas):

9.12 Latent Heat of Vaporization:

9.13 Heat of Combustion:

9.14 Heat of Decomposition:

9.15 Heat of Solution:

9.16 Heat of Polymerization:

9.17 Heat of Fusion:

9.18 Limiting Value:

9.19 Reid Vapor Pressure:

NOTES

JUNE 1999
<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit inch per hour-square foot-F</th>
<th>Temperature (degrees F)</th>
<th>Centipoise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per 100 pounds of water</th>
<th>Temperature (degrees F)</th>
<th>Pounds per square inch</th>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Congratulations,