GLYCIDYL METHACRYLATE

1. CORRECTIVE RESPONSE ACTIONS

1.1 Discharge

1.1.1 Contain

1.1.2 Collection Systems: Pump

Clean shore line

3. HEALTH HAZARDS

3.1 Personal Protective Equipment: Polyethylene-coated apron and gloves and close-fitting goggles.

3.2 Symptoms Following Exposure: The liquid irritates eyes about as much as soap. Prolonged contact with skin produces irritation and dermatitis. EYES: Irrigate with clear water for 15 min. and get medical attention.

3.3 Treatment of Exposure: SKIN: Wash thoroughly with soap and water and treat as a chemical burn. EYES: Wash with clear water for 15 min. and get medical attention.

5. CHEMICAL REACTIVITY

5.1 Reactivity with Water: No reaction

5.2 Reactivity with Common Materials: No reaction

5.3 Stability During Transport: Stable

5.4 Neutralizing Agents for Acids and Caustics: Not pertinent

5.5 Polymerization: Heat, peroxides, and caustics all cause polymerization; the reaction is not considered hazardous.

5.6 Inhibitor of Polymerization: Hydroquinone monomethyl ether: 50 ppm

6. WATER POLLUTION

6.1 Aquatic Toxicity: Currently not available

6.2 Waterway Toxicity: Currently not available

6.3 Biological Oxygen Demand (BOD): Currently not available

6.4 Food Chain Concentration Potential: None

6.5 GESAMP Hazard Profile: Not listed

7. SHIPPING INFORMATION

7.1 Grades of Purity: Technical: 92%

7.2 Storage Temperature: Ambient

7.3 Inert Atmosphere: No requirement

7.4 Venting: Currently not available

7.5 IMO Pollution Category: Currently not available

7.6 Ship Type: Currently not available

7.7 Barge Hull Type: Currently not available

8. HAZARD CLASSIFICATIONS

8.1 49 CFR Category: Not listed

8.2 49 CFR Class: Not pertinent

8.3 49 CFR Package: Not listed

8.4 Marine Pollutant: No

8.5 NFPA Hazard Classification: Not listed

8.6 EPA Reportable Quantity: Not listed

8.7 EPA Pollution Category: Not listed

8.8 RCRA Waste Number: Not listed

8.9 EPA FWPCA List: Not listed

9. PHYSICAL & CHEMICAL PROPERTIES

9.1 Physical State at 15°C and 1 atm: Liquid

9.2 Molecular Weight: 142.2

9.3 Boiling Point at 1 atm: Very high

9.4 Freezing Point: Not pertinent

9.5 Critical Temperature: Not pertinent

9.6 Critical Pressure: Not pertinent

9.7 Specific Gravity: 1.073 at 20°C (liquid)

9.8 Liquid Surface Tension: (est.) 25 dynes/cm = 0.025 N/m at 20°C

9.9 Liquid Water Interfacial Tension: (est.) 40 dynes/cm = 0.04 N/m at 20°C

9.10 Vapor (Gas) Specific Gravity: Not pertinent

9.11 Ratio of Specific Heats of Vapor (Gas): (est.) 1.043

9.12 Latent Heat of Vaporization: Not pertinent

9.13 Heat of Combustion: (est.) –10,800 Btu/lb = –5,980 cal/g = –250 X 10^7 J/kg

9.14 Heat of Decomposition: Not pertinent

9.15 Heat of Solution: Not pertinent

9.16 Heat of Polymerization: (est.) –590 Btu/lb = –500 cal/g = –20 X 10^7 J/kg

9.17 Heat of Fusion: Currently not available

9.18 Limiting Value: Currently not available

9.19 Reid Vapor Pressure: Currently not available

NOTES

JUNE 1999
<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit inch per hour-square foot-F</th>
<th>Temperature (degrees F)</th>
<th>Centipoise</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>66.980</td>
<td>95</td>
<td>0.426</td>
<td>50</td>
<td>1.040</td>
<td>50</td>
<td>9.343</td>
</tr>
<tr>
<td>52</td>
<td>66.880</td>
<td>90</td>
<td>0.430</td>
<td>52</td>
<td>1.040</td>
<td>52</td>
<td>9.641</td>
</tr>
<tr>
<td>54</td>
<td>66.880</td>
<td>95</td>
<td>0.434</td>
<td>54</td>
<td>1.040</td>
<td>54</td>
<td>9.870</td>
</tr>
<tr>
<td>56</td>
<td>66.880</td>
<td>100</td>
<td>0.438</td>
<td>56</td>
<td>1.040</td>
<td>56</td>
<td>7.927</td>
</tr>
<tr>
<td>58</td>
<td>66.880</td>
<td>105</td>
<td>0.442</td>
<td>58</td>
<td>1.040</td>
<td>58</td>
<td>7.511</td>
</tr>
<tr>
<td>60</td>
<td>66.880</td>
<td>110</td>
<td>0.446</td>
<td>60</td>
<td>1.040</td>
<td>60</td>
<td>7.119</td>
</tr>
<tr>
<td>62</td>
<td>66.880</td>
<td>115</td>
<td>0.451</td>
<td>62</td>
<td>1.040</td>
<td>62</td>
<td>6.751</td>
</tr>
<tr>
<td>64</td>
<td>66.880</td>
<td>120</td>
<td>0.455</td>
<td>64</td>
<td>1.040</td>
<td>64</td>
<td>6.404</td>
</tr>
<tr>
<td>66</td>
<td>66.880</td>
<td>125</td>
<td>0.459</td>
<td>66</td>
<td>1.040</td>
<td>66</td>
<td>6.078</td>
</tr>
<tr>
<td>68</td>
<td>66.880</td>
<td>130</td>
<td>0.463</td>
<td>68</td>
<td>1.040</td>
<td>68</td>
<td>5.770</td>
</tr>
<tr>
<td>70</td>
<td>66.880</td>
<td>135</td>
<td>0.467</td>
<td>70</td>
<td>1.040</td>
<td>70</td>
<td>5.461</td>
</tr>
<tr>
<td>72</td>
<td>66.880</td>
<td>140</td>
<td>0.471</td>
<td>72</td>
<td>1.040</td>
<td>72</td>
<td>5.207</td>
</tr>
<tr>
<td>74</td>
<td>66.880</td>
<td>145</td>
<td>0.476</td>
<td>74</td>
<td>1.040</td>
<td>74</td>
<td>4.950</td>
</tr>
<tr>
<td>76</td>
<td>66.880</td>
<td>150</td>
<td>0.480</td>
<td>76</td>
<td>1.040</td>
<td>76</td>
<td>4.707</td>
</tr>
<tr>
<td>78</td>
<td>66.880</td>
<td>155</td>
<td>0.484</td>
<td>78</td>
<td>1.040</td>
<td>78</td>
<td>4.477</td>
</tr>
<tr>
<td>80</td>
<td>66.980</td>
<td>160</td>
<td>0.488</td>
<td>80</td>
<td>1.040</td>
<td>80</td>
<td>4.260</td>
</tr>
<tr>
<td>82</td>
<td>66.980</td>
<td>165</td>
<td>0.492</td>
<td>82</td>
<td>1.040</td>
<td>82</td>
<td>4.056</td>
</tr>
<tr>
<td>84</td>
<td>66.980</td>
<td>170</td>
<td>0.496</td>
<td>84</td>
<td>1.040</td>
<td>84</td>
<td>3.862</td>
</tr>
</tbody>
</table>