CAUTIONARY RESPONSE INFORMATION

Ethyl phosphonothioic dichloride

Liquid
- Colorless
- Choking odor
- Reacts with water. Poisonous gas is produced on contact with water.

Exposure
- CALL FOR MEDICAL AID.
- Gas produced in reaction with water. Poisonous if inhaled.
- Extinguish with dry chemicals or carbon dioxide.
- Do not use water or foam on fire.

Fire
- Combustible.
- Poisonous gases are produced in fire.
- Extinguish with dry chemicals or carbon dioxide.
-Notify local health and pollution control agencies.

Water
- Effect of low concentrations on aquatic life is unknown.
- Not pertinent.

Pollution
- May be dangerous if it enters water intakes.
- Notify local health and wildlife officials.
- Notify operators of nearby water intakes.

Collection Systems
- Pump to off-site recovery or treatment.
- Neutralize.
- Do not burn.

1. CORRECTIVE RESPONSE ACTIONS
- Dilute and disperse
- Stop discharge
- Protect water intakes
- Notify operators of nearby water intakes

2. CHEMICAL DESIGNATIONS
- 2.1 CG Compatibility Group: Not listed
- 2.2 Formula: CHClNS
- 2.3 IM0/UN Designation: 81/760
- 2.4 DOT No.: 2927
- 2.5 CAS Registry No.: Currently not available
- 2.6 H1430 Guide No.: 165
- 2.7 Standard Industrial Trade Classification: 51631

3. HEALTH HAZARDS
- 3.1 Personal Protective Equipment: Air mask, rubber or neoprene gloves; vapor-tight goggles.
- 3.2 Symptoms Following Exposure: Inhalation of vapor causes pulmonary and eye irritation; effects on lungs may be delayed 24 hours; very similar to phosgene poisoning. Contact with liquid causes painful irritation of eyes and lachrymation; also causes severe irritation and possible damage to skin. Ingestion causes severe irritation of mouth and stomach.
- 3.3 Treatment of Exposure: INHALATION: remove victim from exposure; oxygen can be used for pulmonary symptoms with decontamination; enforce complete rest, because effects may be delayed 24 hours, similar to phosgene poisoning. EYES: flush thoroughly with water and seek medical attention; apply Pontocaine drops (1/2%) and cortisone ointment (1%). SKIN: wash thoroughly with soap and water. INGESTION: give large amounts of water; induce vomiting; get medical attention; enforce rest for 24-36 hours.
- 3.4 TLV-TWA: Not listed
- 3.5 TLV-STEL: Not listed
- 3.6 TLV-Ceiling: Not listed
- 3.7 Toxicity by Ingestion: Grade 2; LDV = 0.5 to 5 g/kg
- 3.8 Toxicity by Inhalation: Currently not available
- 3.9 Chronic Toxicity: Currently not available
- 3.10 Vapor (Gas) Irritant Characteristics: Currently not available
- 3.11 Liquid or Solid Characteristics: Currently not available
- 3.12 Odor Threshold: Currently not available
- 3.13 IDLH Value: Not listed
- 3.14 OSHA PEL-TWA: Not listed
- 3.15 OSHA PEL-STEL: Not listed
- 3.16 OSHA PEL-Ceiling: Not listed
- 3.17 EPA AEGL: Not listed

4. FIRE HAZARDS
- 4.1 Flash Point: 203°F O.C.
- 4.2 Flammable Limits in Air: Currently not available
- 4.3 Fire Extinguishing Agents: Dry chemical or carbon dioxide
- 4.4 Fire Extinguishing Agents Not to Be Used: Water or foam
- 4.5 Special Hazards of Combustion: Products: Oxides of sulfur, phosphorus; hydrogen chloride and phosgene.
- 4.6 Behavior in Fire: Contact with water applied to adjacent fires will produce irritating fumes of hydrogen chloride.
- 4.7 Auto Ignition Temperature: Currently not available
- 4.8 Electrical Hazards: Currently not available
- 4.9 Burning Rate: Currently not available
- 4.10 Acidic Flame Temperature: Currently not available
- 4.11 Stoichiometric Air to Fuel Ratio: 19.0 (calc.)
- 4.12 Flame Temperature: Currently not available
- 4.13 Combustion Molar Ratio (Reactant to Product): 7.0 (calc.)
- 4.14 Minimum Oxygen Concentration for Combustion (MOCC): Not listed

5. CHEMICAL REACTIVITY
- 5.1 Reactivity with Water: Reacts with water to evolve hydrogen chloride (hydrochloric acid)
- 5.2 Reactivity with Common Materials: Will react with surface moisture to evolve hydrogen chloride, which is corrosive to common metals.
- 5.3 Stability During Transport: Stable
- 5.4 Neutralizing Agents for Acids and Corrosive: Sodium bicarbonate or lime solution.
- 5.5 Polymerization: Not pertinent
- 5.6 Inhibitor of Polymerization: Not pertinent

6. WATER POLLUTION
- 6.1 Aquatic Toxicity: Currently not available
- 6.2 Biodegradable Toxicity: Currently not available
- 6.3 Biological Oxygen Demand (BOD): Currently not available
- 6.4 Food Chain Concentration Potential: None
- 6.5 GESAMP Hazard Profile: Not listed

7. SHIPPING INFORMATION
- 7.1 Grades of Purity: Commercial
- 7.2 Storage Temperature: Ambient
- 7.3 Inert Atmosphere: Treated with dry nitrogen.
- 7.4 Venting: Pressure-vacuum
- 7.5 IMO Pollution Category: Currently not available
- 7.6 Ship Type: Currently not available
- 7.7 Bale Hall Type: Currently not available

8. HAZARD CLASSIFICATIONS
- 8.1 49 CFR Category: Poison
- 8.2 49 CFR Class: 6.1
- 8.3 49 CFR Package Group: I
- 8.4 Marine Pollutant: No
- 8.5 NFPA Hazard Classification: Not listed
- 8.6 EPA Reportable Quantity: Not listed
- 8.7 EPA Pollution Category: Not listed
- 8.8 RCRA Waste Number: Not listed
- 8.9 EPA SW846 List: Not listed

9. PHYSICAL & CHEMICAL PROPERTIES
- 9.1 Physical State at 15°C and 1 atm: Liquid
- 9.2 Molecular Weight: 163
- 9.3 Boiling Point at 1 atm: 342°F = 172°C = 445 K
- 9.4 Freezing Point: <–58°F = <–50°C = <223°K
- 9.5 Critical Temperature: Not pertinent
- 9.6 Critical Pressure: Not pertinent
- 9.7 Specific Gravity: 1.35 at 20°C (liquid)
- 9.8 Liquid Surface Tension: (est.) 28 dynes/cm = 0.028 nm at 20°C
- 9.9 Liquid Water Interface Tension: Not pertinent
- 9.10 Vapor (Gas) Specific Gravity: Not pertinent
- 9.11 Ratio of Specific Heats of Vapor (Gas): Not pertinent
- 9.12 Latent Heat of Vaporization: Not pertinent
- 9.13 Heats of Combustion: –1,700 Btu/lb = –4,280 cal/g = –179 X 10⁶ J/kg
- 9.14 Heat of Decomposition: Not pertinent
- 9.15 Heat of Solution: Currently not available
- 9.16 Heat of Polymerization: Not pertinent
- 9.17 Heat of Fusion: Currently not available
- 9.18 Limiting Values: Currently not available
- 9.19 Reid Vapor Pressure: Currently not available

6.5 GESAMP Hazard Profile: Not listed

NOTES

JUNE 1999
<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit inch per hour-square foot-F</th>
<th>Temperature (degrees F)</th>
<th>Centipoise</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>89.820</td>
<td>65</td>
<td>0.241</td>
<td>51</td>
<td>1.129</td>
<td>51</td>
<td>0.018</td>
</tr>
<tr>
<td>54</td>
<td>89.129</td>
<td>70</td>
<td>0.244</td>
<td>52</td>
<td>1.129</td>
<td>52</td>
<td>0.773</td>
</tr>
<tr>
<td>56</td>
<td>88.429</td>
<td>75</td>
<td>0.246</td>
<td>53</td>
<td>1.129</td>
<td>53</td>
<td>0.535</td>
</tr>
<tr>
<td>58</td>
<td>87.740</td>
<td>80</td>
<td>0.252</td>
<td>54</td>
<td>1.129</td>
<td>54</td>
<td>0.305</td>
</tr>
<tr>
<td>60</td>
<td>87.049</td>
<td>85</td>
<td>0.256</td>
<td>55</td>
<td>1.129</td>
<td>55</td>
<td>0.802</td>
</tr>
<tr>
<td>62</td>
<td>86.349</td>
<td>90</td>
<td>0.259</td>
<td>56</td>
<td>1.129</td>
<td>56</td>
<td>7.865</td>
</tr>
<tr>
<td>64</td>
<td>85.660</td>
<td>95</td>
<td>0.263</td>
<td>57</td>
<td>1.129</td>
<td>57</td>
<td>7.452</td>
</tr>
<tr>
<td>66</td>
<td>84.959</td>
<td>100</td>
<td>0.267</td>
<td>58</td>
<td>1.129</td>
<td>58</td>
<td>7.255</td>
</tr>
<tr>
<td>68</td>
<td>84.270</td>
<td>105</td>
<td>0.271</td>
<td>59</td>
<td>1.129</td>
<td>59</td>
<td>7.064</td>
</tr>
<tr>
<td>70</td>
<td>83.580</td>
<td>110</td>
<td>0.274</td>
<td>60</td>
<td>1.129</td>
<td>60</td>
<td>6.879</td>
</tr>
<tr>
<td>72</td>
<td>82.879</td>
<td>115</td>
<td>0.278</td>
<td>61</td>
<td>1.129</td>
<td>61</td>
<td>6.689</td>
</tr>
<tr>
<td>74</td>
<td>82.170</td>
<td>120</td>
<td>0.282</td>
<td>62</td>
<td>1.129</td>
<td>62</td>
<td>6.524</td>
</tr>
<tr>
<td>76</td>
<td>81.500</td>
<td>125</td>
<td>0.286</td>
<td>63</td>
<td>1.129</td>
<td>63</td>
<td>6.355</td>
</tr>
<tr>
<td>78</td>
<td>80.799</td>
<td>130</td>
<td>0.289</td>
<td>64</td>
<td>1.129</td>
<td>64</td>
<td>6.031</td>
</tr>
<tr>
<td>80</td>
<td>80.110</td>
<td>135</td>
<td>0.292</td>
<td>65</td>
<td>1.129</td>
<td>65</td>
<td>5.726</td>
</tr>
<tr>
<td>82</td>
<td>79.419</td>
<td>140</td>
<td>0.296</td>
<td>66</td>
<td>1.129</td>
<td>66</td>
<td>5.430</td>
</tr>
<tr>
<td>84</td>
<td>78.719</td>
<td>145</td>
<td>0.299</td>
<td>67</td>
<td>1.129</td>
<td>67</td>
<td>5.167</td>
</tr>
<tr>
<td>86</td>
<td>78.030</td>
<td>150</td>
<td>0.302</td>
<td>68</td>
<td>1.129</td>
<td>68</td>
<td>4.911</td>
</tr>
<tr>
<td>88</td>
<td>77.349</td>
<td>155</td>
<td>0.305</td>
<td>69</td>
<td>1.129</td>
<td>69</td>
<td>4.670</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per 100 pounds of water</th>
<th>Temperature (degrees F)</th>
<th>Pounds per square inch</th>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>55</td>
<td>0.017</td>
<td>55</td>
<td>0.00051</td>
<td>N</td>
<td>0.00051</td>
<td>N</td>
</tr>
<tr>
<td>E</td>
<td>60</td>
<td>0.020</td>
<td>60</td>
<td>0.00059</td>
<td>O</td>
<td>0.00059</td>
<td>O</td>
</tr>
<tr>
<td>A</td>
<td>65</td>
<td>0.024</td>
<td>65</td>
<td>0.00070</td>
<td>T</td>
<td>0.00070</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>70</td>
<td>0.028</td>
<td>70</td>
<td>0.00081</td>
<td>P</td>
<td>0.00081</td>
<td>P</td>
</tr>
<tr>
<td>T</td>
<td>75</td>
<td>0.033</td>
<td>75</td>
<td>0.00095</td>
<td>E</td>
<td>0.00095</td>
<td>E</td>
</tr>
<tr>
<td>S</td>
<td>80</td>
<td>0.039</td>
<td>80</td>
<td>0.00110</td>
<td>R</td>
<td>0.00110</td>
<td>R</td>
</tr>
<tr>
<td>90</td>
<td>0.053</td>
<td>90</td>
<td>0.00147</td>
<td>I</td>
<td>N</td>
<td>0.00147</td>
<td>N</td>
</tr>
<tr>
<td>95</td>
<td>0.062</td>
<td>95</td>
<td>0.00170</td>
<td>T</td>
<td>N</td>
<td>0.00170</td>
<td>T</td>
</tr>
<tr>
<td>100</td>
<td>0.072</td>
<td>100</td>
<td>0.00196</td>
<td>I</td>
<td>T</td>
<td>0.00196</td>
<td>T</td>
</tr>
<tr>
<td>105</td>
<td>0.084</td>
<td>105</td>
<td>0.00225</td>
<td>E</td>
<td>N</td>
<td>0.00225</td>
<td>N</td>
</tr>
<tr>
<td>110</td>
<td>0.097</td>
<td>110</td>
<td>0.00258</td>
<td>T</td>
<td>T</td>
<td>0.00258</td>
<td>T</td>
</tr>
<tr>
<td>115</td>
<td>0.112</td>
<td>115</td>
<td>0.00296</td>
<td>T</td>
<td>T</td>
<td>0.00296</td>
<td>T</td>
</tr>
<tr>
<td>120</td>
<td>0.129</td>
<td>120</td>
<td>0.00338</td>
<td>T</td>
<td>T</td>
<td>0.00338</td>
<td>T</td>
</tr>
<tr>
<td>125</td>
<td>0.148</td>
<td>125</td>
<td>0.00385</td>
<td>T</td>
<td>T</td>
<td>0.00385</td>
<td>T</td>
</tr>
<tr>
<td>130</td>
<td>0.170</td>
<td>130</td>
<td>0.00438</td>
<td>T</td>
<td>T</td>
<td>0.00438</td>
<td>T</td>
</tr>
<tr>
<td>135</td>
<td>0.195</td>
<td>135</td>
<td>0.00498</td>
<td>T</td>
<td>T</td>
<td>0.00498</td>
<td>T</td>
</tr>
<tr>
<td>140</td>
<td>0.223</td>
<td>140</td>
<td>0.00564</td>
<td>T</td>
<td>T</td>
<td>0.00564</td>
<td>T</td>
</tr>
<tr>
<td>145</td>
<td>0.254</td>
<td>145</td>
<td>0.00638</td>
<td>T</td>
<td>T</td>
<td>0.00638</td>
<td>T</td>
</tr>
<tr>
<td>150</td>
<td>0.289</td>
<td>150</td>
<td>0.00721</td>
<td>T</td>
<td>T</td>
<td>0.00721</td>
<td>T</td>
</tr>
<tr>
<td>155</td>
<td>0.329</td>
<td>155</td>
<td>0.00813</td>
<td>T</td>
<td>T</td>
<td>0.00813</td>
<td>T</td>
</tr>
<tr>
<td>160</td>
<td>0.373</td>
<td>160</td>
<td>0.00915</td>
<td>T</td>
<td>T</td>
<td>0.00915</td>
<td>T</td>
</tr>
<tr>
<td>165</td>
<td>0.423</td>
<td>165</td>
<td>0.01028</td>
<td>T</td>
<td>T</td>
<td>0.01028</td>
<td>T</td>
</tr>
<tr>
<td>170</td>
<td>0.478</td>
<td>170</td>
<td>0.01154</td>
<td>T</td>
<td>T</td>
<td>0.01154</td>
<td>T</td>
</tr>
<tr>
<td>175</td>
<td>0.540</td>
<td>175</td>
<td>0.01292</td>
<td>T</td>
<td>T</td>
<td>0.01292</td>
<td>T</td>
</tr>
</tbody>
</table>