2-ETHYLHEXYL ACRYLATE

1. CORRECTIVE RESPONSE ACTIONS

1. **Ship discharge**
 - Contain Collection Systems: Slime
 - Chemical and Physical Treatment: Burn; Absorb
 - Clean shore line
 - Salvage waterfowl

2. **Release on Water**
 - Notify local health and wildlife officials.
 - Notify operators or nearby water intake agencies.

2. CHEMICAL DESIGNATIONS

<table>
<thead>
<tr>
<th>Category</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTIONARY RESPONSE INFORMATION</td>
<td></td>
</tr>
<tr>
<td>Common Synonyms</td>
<td></td>
</tr>
<tr>
<td>Acrylic acid, 2-ethylhexyl ester</td>
<td></td>
</tr>
<tr>
<td>2-Ethylhexyl-2-propionate</td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>Colorless</td>
</tr>
<tr>
<td>Floats on water.</td>
<td></td>
</tr>
</tbody>
</table>

3. HEALTH HAZARDS

3.1 Personal Protective Equipment
- Self-contained breathing apparatus; rubber gloves; vapor-proof chemical safety goggles; impervious apron and boots.

3.2 Symptoms Following Exposure
- Inhalation of concentrated vapor causes drowsiness and convulsions.
- Liquid causes irritation of eyes and may irritate skin on prolonged exposure.

3.3 Treatment of Exposure
- **INHALATION:** give artificial respiration and oxygen if necessary; call a physician. EYES: immediately flush with plenty of water for at least 15 min.; get medical attention. SKIN: immediately flush with plenty of water for at least 15 min. INGESTION: induce vomiting and consult a physician.

3.4 TLV-TWA
- Not listed.

3.5 TLV-STEL
- Not listed.

3.6 Toxicity by Ingestion
- Grade 2; oral rat LD50 = 1,540 mg/kg

3.7 Toxicity by Inhalation
- Currently not available.

3.8 Chronic Toxicity
- Currently not available.

3.9 Irritant Characteristics
- Currently not available.

3.10 Vapor (Gas) Irritant Characteristics
- Vapors are nonirritating to eyes and throat.

3.11 Liquid or Solid Characteristics
- Minimum hazard. If spilled on clothing and allowed to remain, may cause smarting and reddening of the skin.

4. FIRE HAZARDS

4.1 Flash Point
- 195°F O.C.

4.2 Flammable Limits in Air
- 0.8%-6.4% (lower limit)

4.3 Fire Extinguishing Agents
- Dry chemical or carbon dioxide

4.4 Fire Extinguishing Agent Not to Be Used
- Water or foam may cause frothing.

4.5 Special Hazards of Combustion
- Products: Not pertinent

4.6 Behavior in Fire
- Combustible.

4.7 Auto Ignition Temperature
- 496°F

4.8 Electrical Hazards
- Currently not available.

4.9 Burning Rate
- 4.6 mm/min.

4.10 Flashpoint
- 214°C = 487°K

4.11 Stoichiometric Air to Fuel Ratio
- 71.4

4.12 Flame Temperature
- Currently not available

4.13 Combustion Molar Ratio
- Reactant to Product: 21.0 (calc.)

4.14 Minimum Oxygen Concentration
- For Combustion (MOC): Not listed

5. CHEMICAL REACTIVITY

5.1 Reactivity with Water
- No reaction

5.2 Reactivity with Common Materials
- No reaction

5.3 Stability During Transport
- Stable

5.4 Neutralizing Agents for Acids and Caustics
- Not pertinent

5.5 Polymerization
- Will polymerize in the presence of an initiator.

5.6 Stability (Monomers)
- Ether of hydroxypropene: 13-120 ppm.
- Hydroquinone: 90-120 ppm.

6. WATER POLLUTION

6.1 Aquatic Toxicity
- 75 ppm/24 hr for brine shrimp/TL

6.2 Waterfowl Toxicity
- Currently not available

6.3 Biological Oxygen Demand (BOD)
- 9% of theoretical in 5 days, fresh water, acclimated seed

6.4 Food Chain Concentration Potential
- None

6.5 GESAMP Hazard Profile
- Bioaccumulation: 0
- Damage to living resources: 3
- Human Oral hazard: 0
- Human Contact hazard: 1
- Reduction of amenities: X

7. SHIPPING INFORMATION

7.1 Grades of Purity
- 99+% (99.5+)

7.2 Storage Temperature
- <100°F (38°C)

7.3 Inert Atmosphere
- No requirement

7.4 Ventilation
- Open (flame arrestor)

7.5 IMO Pollution Category
- B

7.6 Ship Type
- 3

7.7 Barge Hull Type
- 3

8. HAZARD CLASSIFICATIONS

8.1 49 CFR Category
- Not listed.

8.2 49 CFR Class
- Not pertinent

8.3 49 CFR Package Group
- Not listed.

8.4 Marine Pollutant
- Not pertinent

8.5 NFPA Hazard Classification
- Not pertinent.

9. PHYSICAL & CHEMICAL PROPERTIES

9.1 Physical State at 15°C and 1 atm
- Liquid

9.2 Molecular Weight
- 184.2

9.3 Boiling Point at 1 atm
- 21.0°F = -6.4°C

9.4 Freezing Point
- -130°F = -90°C = 183 K

9.5 Critical Temperature
- Not pertinent

9.6 Critical Pressure
- Not pertinent

9.7 Specific Gravity
- 0.885 at 20°C (liquid)

9.8 Liquid Surface Tension
- (est.) 26 dynes/cm

9.9 Liquid Water Interfacial Tension
- (est.) 30 dynes/cm

9.10 Vapor (Gas) Specific Gravity
- Not pertinent

9.11 Ratio of Specific Heats of Vapor (Gas)
- Not pertinent

9.12 Latent Heat of Vaporization
- 110 Btu/lb = 61 cal/g = 2.6 X 10^4 J/kg

9.13 Heat of Combustion
- -15,500 Btu/lb = -6,400 cal/g = 360 X 10^4 J/kg

9.14 Heat of Decomposition
- Not pertinent

9.15 Heat of Solution
- Not pertinent

9.16 Heat of Polymerization
- -142 Btu/lb = -79 cal/g = -3.3 X 10^4 J/kg

9.17 Heat of Fusion
- Currently not available

9.18 Limiting Values
- Currently not available

9.19 Reid Vapor Pressure
- 0.01 psi

NOTES

- **EAI**

JUNE 1999
<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per hour-square foot-F</th>
<th>Temperature (degrees F)</th>
<th>Centipoise</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>56.640</td>
<td>35</td>
<td>0.402</td>
<td>42</td>
<td>1.048</td>
<td>15</td>
<td>3.689</td>
<td>20</td>
<td>3.434</td>
</tr>
<tr>
<td>20</td>
<td>56.740</td>
<td>40</td>
<td>0.404</td>
<td>44</td>
<td>1.048</td>
<td>20</td>
<td>3.434</td>
<td>25</td>
<td>3.192</td>
</tr>
<tr>
<td>25</td>
<td>56.840</td>
<td>45</td>
<td>0.407</td>
<td>46</td>
<td>1.048</td>
<td>25</td>
<td>3.192</td>
<td>30</td>
<td>2.972</td>
</tr>
<tr>
<td>30</td>
<td>56.940</td>
<td>50</td>
<td>0.410</td>
<td>49</td>
<td>1.048</td>
<td>30</td>
<td>2.972</td>
<td>35</td>
<td>2.771</td>
</tr>
<tr>
<td>35</td>
<td>57.140</td>
<td>55</td>
<td>0.413</td>
<td>50</td>
<td>1.048</td>
<td>35</td>
<td>2.771</td>
<td>40</td>
<td>2.587</td>
</tr>
<tr>
<td>40</td>
<td>57.340</td>
<td>60</td>
<td>0.416</td>
<td>52</td>
<td>1.048</td>
<td>40</td>
<td>2.587</td>
<td>45</td>
<td>2.419</td>
</tr>
<tr>
<td>45</td>
<td>57.540</td>
<td>65</td>
<td>0.418</td>
<td>54</td>
<td>1.048</td>
<td>45</td>
<td>2.419</td>
<td>50</td>
<td>2.264</td>
</tr>
<tr>
<td>50</td>
<td>57.740</td>
<td>70</td>
<td>0.421</td>
<td>56</td>
<td>1.048</td>
<td>50</td>
<td>2.264</td>
<td>55</td>
<td>2.122</td>
</tr>
<tr>
<td>55</td>
<td>57.940</td>
<td>75</td>
<td>0.424</td>
<td>58</td>
<td>1.048</td>
<td>55</td>
<td>2.122</td>
<td>60</td>
<td>1.992</td>
</tr>
<tr>
<td>60</td>
<td>58.140</td>
<td>80</td>
<td>0.427</td>
<td>60</td>
<td>1.048</td>
<td>60</td>
<td>1.992</td>
<td>65</td>
<td>1.872</td>
</tr>
<tr>
<td>65</td>
<td>58.340</td>
<td>85</td>
<td>0.429</td>
<td>62</td>
<td>1.048</td>
<td>65</td>
<td>1.872</td>
<td>70</td>
<td>1.761</td>
</tr>
<tr>
<td>70</td>
<td>58.540</td>
<td>90</td>
<td>0.432</td>
<td>64</td>
<td>1.048</td>
<td>70</td>
<td>1.761</td>
<td>75</td>
<td>1.659</td>
</tr>
<tr>
<td>75</td>
<td>58.740</td>
<td>95</td>
<td>0.435</td>
<td>66</td>
<td>1.048</td>
<td>75</td>
<td>1.659</td>
<td>80</td>
<td>1.564</td>
</tr>
<tr>
<td>80</td>
<td>58.940</td>
<td>100</td>
<td>0.438</td>
<td>68</td>
<td>1.048</td>
<td>80</td>
<td>1.564</td>
<td>85</td>
<td>1.476</td>
</tr>
<tr>
<td>85</td>
<td>59.140</td>
<td>105</td>
<td>0.441</td>
<td>70</td>
<td>1.048</td>
<td>85</td>
<td>1.476</td>
<td>90</td>
<td>1.395</td>
</tr>
<tr>
<td>90</td>
<td>59.340</td>
<td>110</td>
<td>0.443</td>
<td>72</td>
<td>1.048</td>
<td>90</td>
<td>1.395</td>
<td>95</td>
<td>1.319</td>
</tr>
<tr>
<td>95</td>
<td>59.540</td>
<td>115</td>
<td>0.446</td>
<td>74</td>
<td>1.048</td>
<td>95</td>
<td>1.319</td>
<td>100</td>
<td>1.249</td>
</tr>
<tr>
<td>100</td>
<td>59.740</td>
<td>120</td>
<td>0.449</td>
<td>76</td>
<td>1.048</td>
<td>100</td>
<td>1.249</td>
<td>105</td>
<td>1.184</td>
</tr>
<tr>
<td>105</td>
<td>59.940</td>
<td>130</td>
<td>0.452</td>
<td>80</td>
<td>1.048</td>
<td>110</td>
<td>1.184</td>
<td>115</td>
<td>1.066</td>
</tr>
<tr>
<td>110</td>
<td>60.140</td>
<td>140</td>
<td>0.455</td>
<td>84</td>
<td>1.048</td>
<td>120</td>
<td>1.066</td>
<td>120</td>
<td>1.013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (degrees F)</th>
<th>Pounds per 100 pounds of water</th>
<th>Temperature (degrees F)</th>
<th>Pounds per square inch</th>
<th>Temperature (degrees F)</th>
<th>Pounds per cubic foot</th>
<th>Temperature (degrees F)</th>
<th>British thermal unit per pound-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.340</td>
<td>100</td>
<td>0.011</td>
<td>100</td>
<td>0.00035</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.022</td>
<td>120</td>
<td>0.0067</td>
<td>120</td>
<td>0.0067</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>0.043</td>
<td>140</td>
<td>0.00122</td>
<td>140</td>
<td>0.00122</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>0.064</td>
<td>160</td>
<td>0.00214</td>
<td>160</td>
<td>0.00214</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.135</td>
<td>180</td>
<td>0.00363</td>
<td>180</td>
<td>0.00363</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.229</td>
<td>200</td>
<td>0.00595</td>
<td>200</td>
<td>0.00595</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>0.375</td>
<td>220</td>
<td>0.00947</td>
<td>220</td>
<td>0.00947</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>0.598</td>
<td>240</td>
<td>0.01466</td>
<td>240</td>
<td>0.01466</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>0.828</td>
<td>260</td>
<td>0.02013</td>
<td>260</td>
<td>0.02013</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.598</td>
<td>300</td>
<td>0.04717</td>
<td>300</td>
<td>0.04717</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>3.036</td>
<td>350</td>
<td>0.06482</td>
<td>350</td>
<td>0.06482</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>6.075</td>
<td>360</td>
<td>0.12720</td>
<td>360</td>
<td>0.12720</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>8.364</td>
<td>380</td>
<td>0.17730</td>
<td>380</td>
<td>0.17730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>11.400</td>
<td>400</td>
<td>0.22750</td>
<td>400</td>
<td>0.22750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>15.260</td>
<td>420</td>
<td>0.29690</td>
<td>420</td>
<td>0.29690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>20.220</td>
<td>440</td>
<td>0.35060</td>
<td>440</td>
<td>0.35060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>26.420</td>
<td>460</td>
<td>0.49300</td>
<td>460</td>
<td>0.49300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>